
BootRet: a general bootstrapped pre-training method for GR
Key idea: dynamically adjust docids in accordance with the evolving 
model parameters during pre-training

The human brain updates the organization of existing knowledge to 
better match updated goals or contents in learning[13]

Key steps:
1. Initial docid generation
2. Pre-training
• Corpus indexing task（CI task）
• Noisy document construction
• synonym replacement
• sentence removal
• sentence shuffling
• word masking

• Semantic consistency loss
• Contrastive losses

• Relevance prediction task (RP task)
• Pseudo-query construction
• Pre-training objective

• Joint learning

3. Enhanced bootstrapping
• Docid update: Fixing 𝜃! , we use the encoder of 𝜃! to encode 

documents to update docids of the previous iteration 𝐼"!#$ , to 𝐼"!
• Retrain the model: To proceed to the next iteration, we retrain the 

model with 𝐼"! . After multiple iterations, we achieve continuous 
dynamic alignment and enhancement
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Generative retrieval uses differentiable search indexes to directly generate 
relevant document identifiers in response to a query. Recent studies have 
highlighted the potential of a strong generative retrieval model, trained 
with carefully crafted pre-training tasks, to enhance downstream retrieval 
tasks via fine-tuning. However, the full power of pre-training for 
generative retrieval remains underexploited due to its reliance on pre-
defined static document identifiers, which may not align with evolving 
model parameters. In this work, we introduce BootRet, a bootstrapped pre-
training method for generative retrieval that dynamically adjusts document 
identifiers during pre-training to accommodate the continuing  
memorization of the corpus. BootRet involves three key training phases: (i) 
initial identifier generation, (ii) pre-training via corpus indexing and 
relevance prediction tasks, and (iii) bootstrapping for identifier updates. To 
facilitate the pre-training phase, we further introduce noisy documents and 
pseudo-queries, generated by large language models, to resemble semantic 
connections in both indexing and retrieval tasks. Experimental results 
demonstrate that BootRet significantly outperforms existing pre-training 
generative retrieval baselines and performs well even in zero-shot settings.

Abstract

Approach

• Document retrieval aims to retrieve candidate documents from a huge document collection for a 
given query[1,2]

• Dense retrieval is the dominant implementation, which encodes the query and documents into dense 
embedding vectors to capture rich semantics [3,4]

• Generative retrieval employs a sequence-to-sequence (Seq2Seq) architecture to generate relevant 
document identifiers (docids) for queries[5,6]
• Indexing: memorizing the entire corpus by associating each document with its docid 
• Retrieval: using the indexed corpus information to produce a ranked list of potentially relevant 

docids for a given query
• Using general language models, e.g., BART[7] and T5[8], as the base Seq2Seq model has become a 

popular choice in GR[9,10]
• Some work has designed pre-training objectives for GR.
• Zhou et al. (2022)[11]: document pieces or pseudo-queries are used as input, and docids (e.g., 

product quantization code) are predicted as output with maximum likelihood estimation (MLE)
• Chen et al. (2022)[12]: construct and learn pairs of pseudo-queries and docids (i.e., Wikipedia 

titles) from the corpus
• Applying specialized pre-trained models to GR yields superior results compared to using general 

language models

Introduction

• Pre-training corpus
• English Wikipedia[16]
• MS MARCO Document Collection[17]
• Sample 500K documents; Generate 4 noisy documents and 5 

pseudo-queries, for each document (2.5M documents and 2.5M 
pseudo-queries for pre-training)

• Downstream retrieval datasets
• MS MARCO Document Ranking dataset[17]: a subset of 300K 

documents (360K training queries, 6980 evaluation queries)
• Natural Question (NQ)[18]: 228K documents (307K training 

queries, 7.8K test queries)
• Baselines

• Sparse retrieval baselines: BM25[19] and DocT5Query[20] 
• Dense retrieval baselines: RepBERT[21], DPR[22], and ANCE[23]
• Advanced GR baselines: DSI[6], GENRE[10], SEAL[9], DSI-

QG[24], NCI[25], Ultron-PQ[11], Corpusbrain[12], GenRet, and 
NOVO[27]

Table 1. Retrieval performance on MS 300k. Table 2. Retrieval performance on NQ.

= • Evaluation metrics
• Hits@K with K = { 1, 10 }; MRR@K with K = { 3, 20 }

• Implementation details
• Pre-training:

• noisy documents and pseudo-queries generation： LLaMA-13b[28]
• Backbone: T5-base[8]
• PQ: length 24; cluster 256; vector dimension 768 [12]
• The max training step is 500K, with the first iteration occurring at step 

100K, followed by iterations every 40K steps thereafter
• Finetuning:

• Use the pre-trained model obtained from the last iteration to generate 
docids

• Models are further fine-tuned with document-docid pairs and labeled 
query-docid pairs with MLE[6]

• Generate 10 pseudo-queries for each document to enhance 
training[24]

Experimental settings

Table 3. Ablation study of the pre-training 
components on Wikipedia corpus.

Figure 2. Results under zero- and low-resource settings.

Figure 3. Retrieval performance of different 
number of iterations on MS 300k.

Figure 5. Impact of Noisy Documents.

Figure 4. t-SNE plot of representations of a query (QID:1039861) 
from MS 300K validation set and documents corresponding to the 
generated  top-100 docid list by BootRet-BsMSand BootRet-MtMS.

Table 4. Ablation study of the pre-training components 
on MS MARCO pre-training corpus.

Experimental results

Figure 1. The bootstrapped pre-training pipeline of BootRet. (1) The initial docids 𝐼!"  are obtained with the initial model parameters 𝜃". (2) To perform the 𝑡-th iteration, we design the corpus indexing task and 
relevance prediction task for pre-training. We construct noisy documents and pseudo-queries with a LLM, and design contrastive losses (the yellow and the orange rectangles) and a semantic consistency loss (the 
green rectangle) to learn the corpus and relevance information discriminatively. After pre-training, the model updates from 𝜃#$%	to 𝜃#. (3) The bootstrapped 𝜃# 	is used to dynamically update the docids 𝐼!#$%	to 𝐼!# , 

i.e., bootstrapped docids, which are further used in the next iteration. (Figure should be viewed in color).

• Conclusion:
• We proposed BootRet, a bootstrapped pre-

training method for GR, addressing the 
mismatch between pre-defined fixed docids 
and evolving model parameters in existing 
pre-training approaches

• It dynamically adjusts docids based on the 
model pre-trained with two tasks

• Extensive experiments validate that BootRet 
achieves superior performance compared to 
strong GR baselines on downstream tasks, 
even in the zero-shot setting

• Limitations:
• Higher computational cost
• Static incremental scenarios 
• Limited scalability

• Paper link: https://arxiv.org/pdf/2407.11504

Conclusion & Limitations
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