Bootstrapped Pre-training with Dynamic Identifier Prediction for Generative Retrieval

Yubao Tang¹, Ruqing Zhang¹, Jiafeng Guo¹, Maarten de Rijke², Yixing Fan¹, Xueqi Cheng¹ ¹CAS Key Lab of Network Data Science and Technology, ICT, CAS; University of Chinese Academy of Sciences ²University of Amsterdam {tangyubao21b,zhangruqing,guojiafeng,fanyixing,cxq}@ict.ac.cn m.derijke@uva.nl

Abstract

Generative retrieval uses differentiable search indexes to directly generate relevant document identifiers in response to a query. Recent studies have highlighted the potential of a strong generative retrieval model, trained with carefully crafted pre-training tasks, to enhance downstream retrieval tasks via fine-tuning. However, the full power of pre-training for generative retrieval remains underexploited due to its reliance on predefined static document identifiers, which may not align with evolving model parameters. In this work, we introduce BootRet, a bootstrapped pretraining method for generative retrieval that dynamically adjusts document identifiers during pre-training to accommodate the continuing memorization of the corpus. BootRet involves three key training phases: (i) initial identifier generation, (ii) pre-training via corpus indexing and relevance prediction tasks, and (iii) bootstrapping for identifier updates. To facilitate the pre-training phase, we further introduce noisy documents and pseudo-queries, generated by large language models, to resemble semantic connections in both indexing and retrieval tasks. Experimental results demonstrate that BootRet significantly outperforms existing pre-training generative retrieval baselines and performs well even in zero-shot settings.

Introduction

- **Document retrieval** aims to retrieve candidate documents from a huge document collection for a given query[1,2]
- **Dense retrieval** is the dominant implementation, which encodes the query and documents into dense • embedding vectors to capture rich semantics [3,4]
- Generative retrieval employs a sequence-to-sequence (Seq2Seq) architecture to generate relevant document identifiers (docids) for queries[5,6]
 - **Indexing:** memorizing the entire corpus by associating each document with its docid
- **Retrieval:** using the indexed corpus information to produce a ranked list of potentially relevant docids for a given query
- Using general language models, e.g., BART[7] and T5[8], as the base Seq2Seq model has become a popular choice in GR[9,10]

Approach

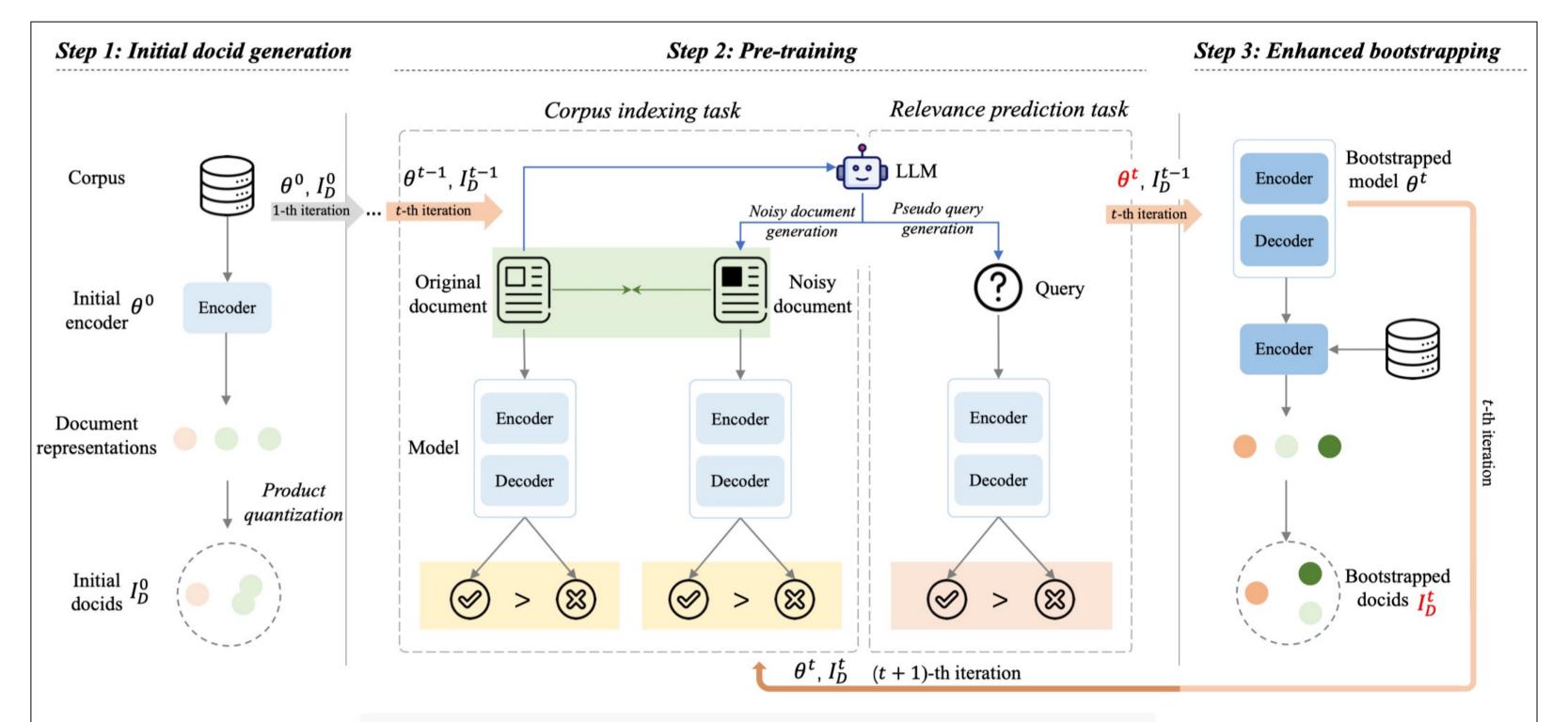
BootRet: a general bootstrapped pre-training method for GR Key idea: dynamically adjust docids in accordance with the evolving model parameters during pre-training

The human brain updates the organization of existing knowledge to better match updated goals or contents in learning[13]

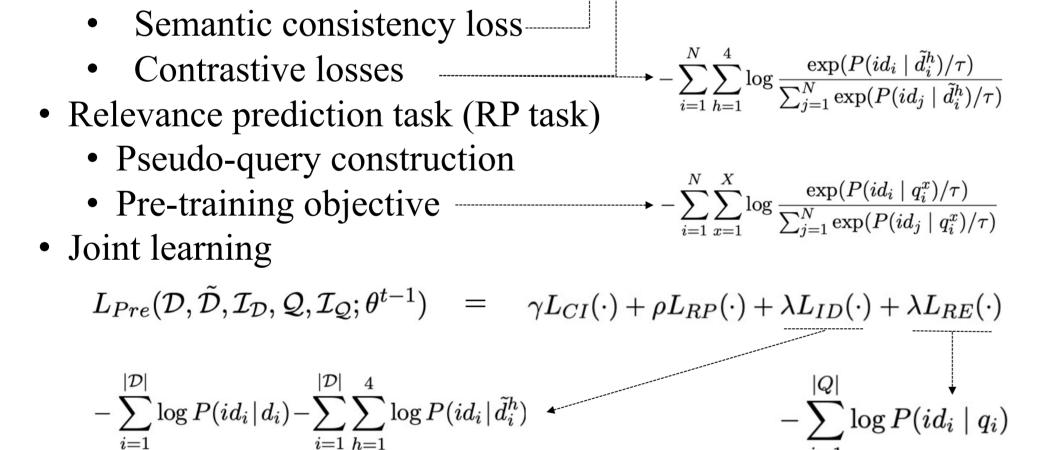
Key steps:

- Initial docid generation
- 2. Pre-training
 - Corpus indexing task (CI task)
 - Noisy document construction $\rightarrow \sum^{N} \sum^{4} 1 - \operatorname{sim}(\operatorname{Enc}(d_i), \operatorname{Enc}(\tilde{d}_i^h))$
 - synonym replacement
 - sentence removal •
 - sentence shuffling
 - word masking

- Some work has designed pre-training objectives for GR.
 - Zhou et al. (2022)[11]: document pieces or pseudo-queries are used as input, and docids (e.g., product quantization code) are predicted as output with maximum likelihood estimation (MLE)
 - Chen et al. (2022)[12]: construct and learn pairs of pseudo-queries and docids (i.e., Wikipedia ullettitles) from the corpus
- Applying **specialized pre-trained models** to GR **yields superior result**s compared to using general language models



Generated probability of the positive docid Generated probability of the negative docid



- 3. Enhanced bootstrapping
 - Docid update: Fixing θ^t , we use the encoder of θ^t to encode documents to update docids of the previous iteration I_D^{t-1} , to I_D^t
 - Retrain the model: To proceed to the next iteration, we retrain the model with I_D^t . After multiple iterations, we achieve continuous dynamic alignment and enhancement

Table 2. Retrieval performance on NQ.

Figure 1. The bootstrapped pre-training pipeline of BootRet. (1) The initial docids I_D^0 are obtained with the initial model parameters θ^0 . (2) To perform the *t*-th iteration, we design the corpus indexing task and relevance prediction task for pre-training. We construct noisy documents and pseudo-queries with a LLM, and design contrastive losses (the yellow and the orange rectangles) and a semantic consistency loss (the green rectangle) to learn the corpus and relevance information discriminatively. After pre-training, the model updates from θ^{t-1} to θ^t . (3) The bootstrapped θ^t is used to dynamically update the docids I_D^{t-1} to I_D^t , i.e., bootstrapped docids, which are further used in the next iteration. (Figure should be viewed in color).

Experimental settings

- **Pre-training corpus**
 - English Wikipedia[16]
 - MS MARCO Document Collection[17]
 - Sample 500K documents; Generate 4 noisy documents and 5 pseudo-queries, for each document (2.5M documents and 2.5M pseudo-queries for pre-training)
- **Downstream retrieval datasets**
 - MS MARCO Document Ranking dataset[17]: a subset of 300K documents (360K training queries, 6980 evaluation queries)
 - Natural Question (NQ)[18]: 228K documents (307K training queries, 7.8K test queries)
- **Baselines**

[10] Autoregressive entity retrieval

[14] Optimized product quantization

[11] Ultron: An ultimate retriever on corpus with a model-based indexer

[18] Natural questions: A benchmark for question answering research

[17] MS MARCO: A human generated machine reading comprehension dataset

[12] Corpusbrain: Pre-train a generative retrieval model for knowledgeintensive language tasks

[13] Dynamic updating of hippocampal object representations reflects new conceptual knowledge

[15] Jointly optimizing query encoder and product quantization to improve retrieval performance

[16] Wikipedia. 2022. Data dumps. https://dumps.wikimedia.org/enwiki/latest/ enwiki-latest-pages-

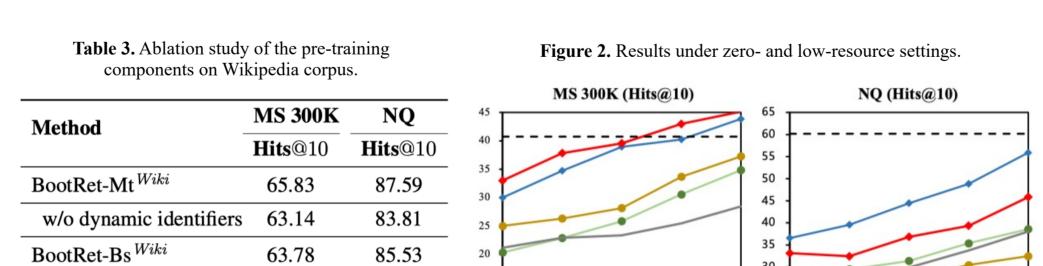
- Sparse retrieval baselines: BM25[19] and DocT5Query[20]
- Dense retrieval baselines: RepBERT[21], DPR[22], and ANCE[23]
- Advanced GR baselines: DSI[6], GENRE[10], SEAL[9], DSI-QG[24], NCI[25], Ultron-PQ[11], Corpusbrain[12], GenRet, and NOVO[27]
- Evaluation metrics
 - Hits@K with $K = \{1, 10\}$; MRR@K with $K = \{3, 20\}$
- Implementation details
 - Pre-training:
 - noisy documents and pseudo-queries generation: LLaMA-13b[28]
 - Backbone: T5-base[8]
 - PQ: length 24; cluster 256; vector dimension 768 [12]
 - The max training step is 500K, with the first iteration occurring at step 100K, followed by iterations every 40K steps thereafter
 - Finetuning:
 - Use the pre-trained model obtained from the last iteration to generate docids
 - Models are further fine-tuned with document-docid pairs and labeled query-docid pairs with MLE[6]
 - Generate 10 pseudo-queries for each document to enhance training[24]

Table 1. Retrieval performance on MS 300k.

			Table 2. Retrieval performance on NQ.						
Method	MRR	Hits	Method	Hits@1	Hits @10				
BM25	@3 @20 22.57 26.67	@1 @10 24.78 40.73	BM25* DocT5query*	29.27 39.13	60.16 69.72	Table 3. Ablation studycomponents on Wi	· •	•	Figure 2. Results under zero- and low-reso
DocT5query		30.13 46.93	RepBERT	50.20	78.12				MS 300K (Hits@10)
RepBERT	31.47 33.68	33.16 55.83	DPR*	52.63	79.31 72.75	Method	MS 300K	NQ	
DPR		36.52 58.68	ANCE	45.42			Hits @10	Hits @10	40 55 -
ANCE		33.63 53.62	DSI* GENRE*	27.40 26.30	56.60 71.20	BootRet-Mt ^{Wiki}	65.83	87.59	35 50 -
DSI GENRE		28.14 49.72 33.18 53.56	SEAL*	26.30	74.50	w/o dynamic identifiers	63.14	83.81	³⁰ 25 40
SEAL	31.35 33.57		DSI-QG*	63.49	82.36	BootRet-Bs ^{Wiki}	63.78	85.53	25 35 35
DSI-QG	33.64 35.81		NCI Corpusbrain	64.24 65.12	83.11 84.09				30
NCI		35.02 59.21	Ultron-PQ	64.61	84.45	w/o pre-training	59.95 63.01	83.26 83.82	25
Corpusbrain	34.72 37.25 35.25 38.41	36.14 60.32 39.53 62.85	GenRet	65.42	85.67	w/o retrieval prediction w/o corpus indexing	63.28	83.91	0 2K 4K 6K 8K 0 2K
Ultron-PQ GenRet		41.68 64.92	NOVO	66.13	86.24	w/o noisy documents	63.47	84.17	Bm25
NOVO		43.14 64.55	BootRet-Bs ^{Wiki}	66.71*	85.53*	w/o contrastive losses	63.31	83.94	Ultron BootRet-Bs ^{Wiki}
			BootRet-Bs MS	65.88	85.04				
BootRet-Bs ^{Wiki}		* 40.73* 63.78*	BootRet-Mt ^{Wiki}	67.32*	87.59*				
BootRet-Bs ^{MS}		* 41.56* 64.89*	BootRet-Mt ^{MS}	66.15*	86.31*				
BootRet-Mt ^{Wiki} BootRet-Mt ^{MS}		* 43.97* 65.83* * 44.21 * 66.73 *				Table 4. Ablation study of the on MS MARCO pre-			Figure 4. t-SNE plot of representations of a que from MS 300K validation set and documents co
Figure 3. Retrie	eval performance	rformance of different	Figure 5. Impact of Noisy Documents.		uments.	Methods	MS 300K	NQ	generated top-100 docid list by BootRet-Bs ^{MS}
	iterations on MS						Hits @10	Hits @10	BootRet-Bs ^{MS}
57.00	BootRet-Mt ^{4/5} 66.47 ^{66.73}		65.00		BootRet-Bs ^{MS}	BootRet-Mt ^{MS}	66.73	86.31	Query A Relevant doc
56.50	66.18 66.33	² 66.1	Q ^{64.50}			w/o dynamic identifiers	63.55	84.62	t ee
66.00 65.50 65.13	3	65.45 65.21	(¥000 64.00			BootRet-Bs MS	64.89	85.04	
			64.00 63.76 01 63.50 63.00	63.62 63.53	63.72	w/o pre-training	59.57	83.71	
4.50 63.95			63.50			w/o retrieval prediction	63.02	84.51	
64.00 63.78			lits			w/o corpus indexing	63.46	84.76	
63.50 BootRet-Bs ^{MS}			≖ _{63.00}			w/o noisy documents	63.95	84.96	
53.00						w/o contrastive losses	63.24	84.62	
52.50 52.00			62.50 w/o synonym w/	o sentence w/o se	ntence w/o word				
1 2 3 4	5 6 7 8	9 10 11 iteration		removal shuf					
Refer	ence	S					-		learning with a unified text-to-text transformer Generating substrings as document identifiers

Experimental results

 $\exp(P(id_i \mid d_i)/\tau)$



BootRet-Mt^{Ms}

---- BootRet-Bs^{Ms}

Conclusion & Limitations

- **Conclusion**: •
 - We proposed BootRet, a bootstrapped pretraining method for GR, addressing the mismatch between pre-defined fixed docids and evolving model parameters in existing pre-training approaches

ponents **Figure 4.** t-SNE plot of representations of a query (QID:1039861) from MS 300K validation set and documents corresponding to the generated top-100 docid list by BootRet-Bs^{MS} and BootRet-Mt^{MS}. NQ • its@10 BootRet-Bs^{MS} BootRet-Mt^{MS} Query Relevant doc 86.31 🕇 Query A Relevant do Irrelevant do Irrelevant doc 84.62 85.04 83.71 . . . 84.51 84.76 84.96 34.62

It dynamically adjusts docids based on the model pre-trained with two tasks

Extensive experiments validate that BootRet achieves superior performance compared to strong GR baselines on downstream tasks, even in the zero-shot setting

Limitations:

- Higher computational cost
- Static incremental scenarios
- Limited scalability

Paper link: https://arxiv.org/pdf/2407.11504

	[19] Okapi at TREC-3								
	[20] From doc2query to doctttttquery								
	[21] RepBERT: Contextualized text embeddings for first-stage retrieval								
	[22] Dense passage retrieval for open-domain question answering								
	[23] Approximate nearest neighbor negative contrastive learning for dense text retrieval								
	[24] Bridging the gap between indexing and retrieval for differentiable search index with query generation								
	[25] A neural corpus indexer for document retrieval								
	[26] Learning to tokenize for generative retrieval								
-articles.xml	1.bz2 [27] NOVO: Learnable and interpretable document identifiers for model-based IR								
	[28] LLaMA: Open and efficient foundation language models								
	© Poster Template by Genigraphics® 1.800.790.4001 www.genigraphics.com								

Keterences

[1] Unsupervised corpus aware language model pre-training for dense passage retrieval [2] DC-BERT: Decoupling question and document for efficient contextual encoding [3] Dcn+: Mixed objective and deep residual coattention for question answering [4] Optimizing dense retrieval model training with hard negatives [5] Recent advances in generative information retrieval [6] Transformer memory as a differentiable search index [7] BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension