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About me

• Postdoc researcher at UvA (IRLab & AIRLab)

• Previously:
• Ph.D. & M.Sc.  Chinese Academy of Sciences, 

China
• B.Sc.  Sichuan University, China

• Research focus: Generative Information Retrieval & 
Recommendation Systems

• Happy to discuss research or course questions — 
feel free to reach out!

• Homepage: https://yubaotang11.github.io/
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Recap

• Text processing
• Advanced ranking methods
• Bag of words
• Inverted indexing for these methods
• Vector Space Model
• Term importance weighting
• Probabilistic ranking methods
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Today

• Part 1: Learning to rank
• Pointwise methods
• Pairwise methods
• Listwise methods

• Part 2: Semantic matching
• Vocabulary mismatch
• Semantic matching
• Distributed representation
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Part 1: Learning to Rank
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Signals in Web Search

• Textual Signals
• Query content: text
• Document content: title, page content

• How well does the query text match the document text? [6]
• BM25
• TF-IDF / vector space models
• Semantic matching with LLMs or topic models
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Signals in Web Search

• But there are many signals beyond text
• Query: type, language
• Document: URLs, images, structure
• User context: location, date, device, search history
• Metadata: popularity, recency, page quality, spam, adult content, …
• External stakeholders: advertisers, auctions, content creators, …
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Signals in Web Search

• Modern search engines use a lot of features
• Airbnb [10]: > 195 features
• Bing [15]: > 136 features
• Istella [7]: > 220 features
• Yahoo [2]: > 700 features

• How do we combine all of these signals?
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• Learning to Rank (LTR) is
• “. . . a task to automatically construct a ranking model using training data, 

such that the model can sort new objects according to their degrees of 
relevance, preference, or importance.” – Liu [13]
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Learning to Rank
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Features

• Traditionally LTR used hand-crafted numerical features
• Nowadays, we also use deep learned features 
• We can categorize features into:
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Problem Formulation
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The goal of learning to rank

• Thus, we have:
• a feature vector for each query-document pair: Ԧ𝑥 𝑞,𝑑 ∈ ℝ𝑚

• a relevance judgment for each query-document pair, e.g.: 𝑦 𝑞,𝑑 ∈ {0, 1, 
2, 3, 4}

• A ranking model 𝑓: Ԧ𝑥 → ℝ scores each query-document pair to optimize the 
order of items when sorting descendingly by 𝑓 Ԧ𝑥 𝑞,𝑑 = 𝑠 𝑞,𝑑

• How can we learn a ranking model 𝒇?
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Pointwise methods
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Pointwise LTR

• Regression: Relevance as a real-valued score [4,9]
• We can use linear regression for our ranking model:

𝑓 𝑥 = 𝑤0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛 = 𝑠

• Each feature has a weight 𝑤, learned to minimize prediction error
• Usually we quantify how far off our predictions are using the mean 

squared error (MSE) loss: 

𝐿𝑚𝑠𝑒 =
1

𝑛
෍ 𝑦𝑖 − 𝑠𝑖

2
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Pointwise LTR – MSE
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Pointwise LTR

• Regression: Relevance as a real-valued score [4, 9]
• Classification: Relevance as unordered categories [3, 14]
• Ordinal regression: Relevance as ordered categories [5, 16]

• What are challenges with these approaches?
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Problems of pointwise LTR

• Some (solvable) challenges include:
• Class imbalance: We have way more irrelevant than relevant documents
• Feature normalization: Feature distributions can differ greatly between 

queries
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Problems of pointwise LTR

• A more fundamental problem:
• Pointwise methods predict a score for each query-document 

independently
• But document scores are fundamentally dependent on each other in a 

ranking
• Minimizing a pointwise loss does not always lead to a better ranking
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Pointwise LTR: A lower loss does not imply a 
better ranking
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𝐿𝑚𝑠𝑒 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑠𝑖
2



Pointwise LTR: A lower loss does not imply a 
better ranking
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𝐿𝑚𝑠𝑒 =1.16 / 5
MRR=1, nDCG=1



Pointwise LTR: A lower loss does not imply a 
better ranking
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𝐿𝑚𝑠𝑒 = 0.77 / 5
MRR=0.2, nDCG=0.39



Pairwise methods
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Pairwise LTR
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• Observation: For a good ranking, we only require relative relevance levels:

𝑦𝑖 > 𝑦𝑗  → 𝑠𝑖 > 𝑠𝑗

• How can we optimize a model with pairs of items?



Naïve pairwise model
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Naïve pairwise model
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• Let’s (naively) change the ranking model to take document pairs as input:

𝑃 𝑖 > 𝑗 = 𝑓(𝑥𝑖 , 𝑥𝑗) 

• But pairwise document inputs are not a good idea:
• This method has quadratic complexity 𝑂(𝑁2) during training and 

inference and thus does not scale to many documents
• Pair-wise preferences have to be aggregated and can lead to paradoxical 

situations:

𝑠1 > 𝑠2
𝑠2 > 𝑠3
𝑠3 > 𝑠1



Pairwise LTR
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• A better idea: Let’s keep the ranking model unchanged:
𝑓 Ԧ𝑥 = si

• But the loss function is based on pairs of documents:

𝐿𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑠, 𝑦 = ෍

𝑦𝑖>𝑦𝑗

∅(𝑠𝑖 − 𝑠𝑗)

• We still score one document at-a-time and can sort according to scores,
   but the model is optimized over item pairs



Pairwise LTR
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• Pairwise loss functions minimize the number of incorrectly ranked pairs:

where 𝑦𝑖 > 𝑦𝑗, but our model falsely predicts 𝑠𝑖 < 𝑠𝑗  .

• Pairwise loss functions generally have the following form:

𝐿𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑠, 𝑦 = ෍

𝑦𝑖>𝑦𝑗

∅(𝑠𝑖 − 𝑠𝑗) 

where ∅ can be the:
• Hinge function in RankingSVM [11, 12]: ∅ 𝑧 = max(0,1 − 𝑧) (z) = max(0, 1 − z)
• Exponential function in RankBoost [8]: ∅ 𝑧 = 𝑒−𝑧  

• Logistic / Sigmoid function in RankNet [1]: ∅ 𝑧 = log(1 + 𝑒−𝑧)



RankNet
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RankNet
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• Introduced by Burges et al. [1] in 2005 to train neural ranking models
• Popular in industry applications and won the ICML 2015 test of time award
• RankNet defines the probability that document i should be ranked over 

document j as:

𝑃 𝑖 > 𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑖 − 𝑠𝑗) 

• RankNet then uses the log loss between the predicted probabilities for each 
pair and their true/target probability: ത𝑃 𝑖 > 𝑗

https://icml.cc/2015/index.html%3Fp=51.html



RankNet
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Mapping the difference in scores between to items to the
predicted probability 𝑃 𝑖 > 𝑗  using the sigmoid function



RankNet
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• Now that we have a model prediction for each item pair, where do we get the target 
probability of ത𝑃 𝑖 > 𝑗  from?

1. Ask annotators to judge pairs of items (infeasible, it requires 𝑂(𝑁2) annotations)
2. We make up probabilities based on relevance judgments:

• If 𝑦𝑖 > 𝑦𝑗, set ത𝑃 𝑖 > 𝑗 = 1

• If 𝑦𝑖 = 𝑦𝑗, set ത𝑃 𝑖 > 𝑗 = 0.5

• If 𝑦𝑖 < 𝑦𝑗, set ത𝑃 𝑖 > 𝑗 = 0

• These made-up/virtual target probabilities were chosen mainly for convenience as they 
simplify the final loss to:

𝐿𝑅𝑎𝑛𝑘𝑁𝑒𝑡 𝑠, 𝑦 = ෍

𝑦𝑖>𝑦𝑗

𝑙𝑜𝑔(1 + 𝑒−(𝑠𝑖−𝑠𝑗)) 

https://icml.cc/2015/index.html%3Fp=51.html



Pairwise LTR
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What are problems of pairwise methods?
The made-up target probabilities ത𝑃 ∈ 0, 0.5, 1 are quite crude, since any 
difference in relevance labels is treated equally. For example:

P(4 > 1) = 1.0
P(4 > 3) = 1.0

Not very elegant, but works well in practice. . .
A more important limitation: We treat all item pairs as equally important,
but are they?



Pairwise LTR: Minimizing pairwise errors
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Pairwise LTR: Minimizing pairwise errors

Reducing pairwise errors from 13 (left) to 11 (right),
while top-heavy measures like MRR and nDCG degrade [1, Figure 1].
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Pairwise LTR: Minimizing pairwise errors

The black arrows denote the RankNet gradients,
while what we’d arguably want are the red arrows [1, Figure 1].
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Optimization Units and Objectives in LTR Methods
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Method Optimization Unit Optimization Objective Required Label Type

Pointwise Individual item Predict scores close to ground-
truth relevance

Absolute labels (e.g., 
0/1 or grades)

Pairwise Item pair Learn which item is more relevant Relative order 
between items



Evaluation Metrics and What They Measure

Metric Evaluated Unit What It Measures

NDCG The entire ranked list Penalizes relevant documents that appear 
lower in the list

MRR Position of the first relevant item How early the first relevant item appears

Hits@K Top-K retrieved items Whether at least one relevant item appears in 
the top K

39

There is a misalignment: 
pointwise and pairwise methods optimize for local accuracy (on items or 
pairs), while ranking metrics care about global ordering, especially at the top 
of the list.



Listwise methods
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LambdaRank

• Motivation: Can we directly optimize IR metrics such as nDCG, Precision, and MRR?

• Reciprocal Rank: Reciprocal of the rank of the first relevant item after sorting by scores:

𝑅𝑅 =
1

𝑟𝑎𝑛𝑘𝑖

• Discounted Cumulative Gain:

𝐷𝐶𝐺 =
1

𝑛
෍

𝑖=1

𝑛
2𝑦𝑖 − 1

log(𝑖 + 1)

• Non-smooth and discontinuous
• Ranking metrics typically only depend on the rank of an item, not on its score
• Model scores change smoothly, the ranks of documents change abruptly
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Listwise LTR

• Non-differentiable
• Ranking metrics rely on a sorting operation that is non-smooth and 

discontinuous w.r.t. to model parameters θ:
𝜕𝑅𝑅

𝜕𝜃
=? ? ?

𝜕𝐷𝐶𝐺

𝜕𝜃
=? ? ?

• Thus, ranking metrics are either flat (with zero gradient) or discontinuous
• Holy grail of LTR: Finding methods that (indirectly) optimize listwise IR metrics
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LambdaRank
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LambdaRank

• Observations:
• To train a model, we don’t need the costs just the gradients (of the costs 

w.r.t model scores)
• Gradients should be larger for pairs that have a greater impact on our 

metric 
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LambdaRank

• Idea: Scale the RankNet gradients for each document pair based on the 
change in nDCG we would observe after swapping the two items:

𝐿𝐿𝑎𝑚𝑏𝑑𝑎𝑅𝑎𝑛𝑘 𝑠, 𝑦 = ෍

𝑦𝑖>𝑦𝑗

∆𝑁𝐷𝐶𝐺 𝑖, 𝑗 log(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑖−𝑠𝑗)
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Conclusion
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Summary

• Today’s search and recommender systems use many signals for ranking.
• These signals can be computed beforehand (static features) or have to be 

computed when the user submits their query (dynamic features).
• Learning to rank is a method to learn models that automatically combine 

these query and document features into a single ranking.
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Summary
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Method Optimization 
Unit

Optimization 
Objective

Required Label 
Type

Alignment with 
Ranking Metrics

Pointwise Individual item
Predict scores close 

to ground-truth 
relevance

Absolute labels 
(e.g., 0/1 or grades)

Ignores relative or 
positional ranking

Pairwise Item pair Learn which item is 
more relevant

Relative order 
between items

Treats all pairwise 
errors equally, 
regardless of 

position

Listwise Entire ranked 
list

Optimize the quality 
of the overall ranking 

(e.g., NDCG)

Full relevance list or 
rankings

Directly accounts 
for ranking quality 

and position impact



Summary
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Aspect RankNet LambdaRank

Method type Pairwise Pairwise-based listwise methods (metric-
aware)

Loss function Cross-entropy on pairwise probabilities No explicit loss; gradients defined directly

Uses 
sigmoid? Yes, to model pairwise preference probability No need for sigmoid

Ranking 
metric aware? No, all pairs treated equally Yes, swaps weighted by impact on metric 

(e.g., NDCG)

Gradient 
computation From loss function Directly defined by ΔNDCG (or other 

metric changes)

Improvement 
over? Pointwise methods RankNet 



Part 2: Semantic Matching



Contents

• Vocabulary mismatch.
• Semantic matching.
• Distributed representation.



Popular Italian cities banning water in 
worst drought in 70 years. A severe 
heatwave and lack of rainfall have led 
to disaster in Italy, especially in cities 
with high population, like Rome.

Stolen artefacts recovered by police 
go on display in new Rome museum.
Italy has been so successful in 
regaining ancient artworks and 
artefacts illegally exported from the 
country.

According to the latest statistics, the 
number of people living in Italy’s 
capital has risen by 10%. As of 2017, it 
has reached 2.9 million.
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heatwave and lack of rainfall have led 
to disaster in Italy, especially in cities 
with high population, like Rome.

Stolen artefacts recovered by police go 
on display in new Rome museum.
Italy has been so successful in 
regaining ancient artworks and 
artefacts illegally exported from the 
country.

According to the latest statistics, the 
number of people living in Italy’s 
capital has risen by 10%. As of 2017, it 
has reached 2.9 million.

D
oc

um
en

t 1
D

oc
um

en
t 2

D
oc

um
en

t 3

What is the population of Rome?

You

???

BM25

???



Dimensionality Reduction

• Vector Space Model reminder: each term is a dimension.
• High dimensional data:

• Vectors in a high-dimensional space.
• Not all possible vectors appear in the data set (sparse).
• This data has intrinsic dimensionality 𝑘 (where 𝑘≪𝑛).

• Latent semantic analysis (LSA): relationship between documents and terms
• Singular Value Decomposition (SVD)



Singular Value Decomposition

• Σ is a diagonal matrix
• Σ contains the 

singular values in 
decreasing order 
(𝜎1 > 𝜎2 > ⋯ > 𝜎𝑛) 

𝑛 terms

𝑚 documents 𝑟 𝑟 𝑚

𝑟

=



An example of SVD: The matrix X

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

wood 1 0 0 1 1 0

tree 0 0 0 1 0 1



An example of SVD ship –0.44 –0.30 0.57 0.58 0.25

boat –0.13 –0.33 –0.59 0.00 0.73

ocean –0.48 –0.51 –0.37 0.00 –0.61

wood –0.70 0.35 0.15 –0.58 0.16

tree –0.26 0.65 –0.41 0.58 –0.09

2.16 0.00 0.00 0.00 0.00

0.00 1.59 0.00 0.00 0.00

0.00 0.00 1.28 0.00 0.00

0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.39

d1 d2 d3 d4 d5 d6

–0.75 –0.28 –0.20 –0.45 –0.33 –0.12

–0.29 –0.53 –0.19 0.63 0.22 0.41

0.28 –0.75 0.45 –0.20 0.12 –0.33

0.00 0.00 0.58 0.00 –0.58 0.58

–0.53 0.29 0.63 0.19 0.41 –0.22

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

wood 1 0 0 1 1 0

tree 0 0 0 1 0 1

=



An example of SVD: The matrix U

• One row per term. 

• Think of the dimensions as semantic dimensions that capture distinct topics 
like politics, sports, economics. 
• Each number 𝑢𝑖𝑗  in the matrix indicates how strongly related term 𝑖 is to 

the topic represented by semantic dimension 𝑗 .

ship –0.44 –0.30 0.57 0.58 0.25

boat –0.13 –0.33 –0.59 0.00 0.73

ocean –0.48 –0.51 –0.37 0.00 –0.61

wood –0.70 0.35 0.15 –0.58 0.16

tree –0.26 0.65 –0.41 0.58 –0.09



An example of SVD: The matrix Σ

• This is a square, diagonal matrix.

• The magnitude of the singular value measures the importance of the 
corresponding semantic dimension.

• We’ll make use of this by omitting unimportant dimensions.

2.16 0.00 0.00 0.00 0.00

0.00 1.59 0.00 0.00 0.00

0.00 0.00 1.28 0.00 0.00

0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.39



An example of SVD: The matrix V

• One column per document.

• These are again the semantic dimensions from the term matrix 𝑈 that capture 
distinct topics like politics, sports, economics. 
• Each number 𝑣𝑖𝑗  in the matrix indicates how strongly related document 𝑖 

is to the topic represented by semantic dimension 𝑗.

d1 d2 d3 d4 d5 d6

–0.75 –0.28 –0.20 –0.45 –0.33 –0.12

–0.29 –0.53 –0.19 0.63 0.22 0.41

0.28 –0.75 0.45 –0.20 0.12 –0.33

0.00 0.00 0.58 0.00 –0.58 0.58

–0.53 0.29 0.63 0.19 0.41 –0.22



How to use SVD in LSA

• Each singular value tells us how important its dimension is. 

• By setting less important dimensions to zero, we keep the important 
information, but get rid of the “details”. 

• These details:
• may be noise – in that case, reduced LSA is a better representation 

because it is less noisy; 
• make things dissimilar that should be similar – again reduced LSI is a 

better representation because it represents similarity better. 



Latent Semantic
Analysis

ship –0.44 –0.30 0.57 0.58 0.25

boat –0.13 –0.33 –0.59 0.00 0.73

ocean –0.48 –0.51 –0.37 0.00 –0.61

wood –0.70 0.35 0.15 –0.58 0.16

tree –0.26 0.65 –0.41 0.58 –0.09

2.16 0.00 0.00 0.00 0.00

0.00 1.59 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

d1 d2 d3 d4 d5 d6

–0.75 –0.28 –0.20 –0.45 –0.33 –0.12

–0.29 –0.53 –0.19 0.63 0.22 0.41

0.28 –0.75 0.45 –0.20 0.12 –0.33

0.00 0.00 0.58 0.00 –0.58 0.58

–0.53 0.29 0.63 0.19 0.41 –0.22

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

wood 1 0 0 1 1 0

tree 0 0 0 1 0 1

=



Choice of 𝑘 (= # of dimensions)

• The choice of 𝑘 is critical.

• Ideally, we want a value of 𝑘:
• large enough to fit all the real structure in the data;
• small enough so that we do not also fit the sampling error or unimportant 

details.

• The proper way to make such choices is an open issue.

• Typically, we use different values of 𝑘 and compare performance based on 
evaluation measures.



Ranking

1. Apply SVD.
2. Reduce dimensionality.
3. Reconstruct matrix with reduced dimensionality.
4. Query representation.
5. Ranking.



Example
• Extracted topics (dimensions):

• Topic 0: jpeg image file gif images graphics format color
• Topic 1: edu graphics pub data mail ftp 128 ray 3d send
• Topic 2: jehovah god lord jesus christ father earth people  
• Topic 3: space earth planet vanue spacecraft solar surface



Summary

• LSA can capture semantics of terms.
• SVD can be used to reduce dimensionality.
• Address vocabulary mismatch.
• Represent documents and queries using LSA topics.
• Compute similarity and rank based on that.



Distributed Representation



Local Representation

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

wood 1 0 0 1 1 0

tree 0 0 0 1 0 1



Distributed Representation

• The features may have direct and obvious relations to the original input but 
they have comparative values.

d1 d2 d3 d4 d5 d6

–0.75 –0.28 –0.20 –0.45 –0.33 –0.12

–0.29 –0.53 –0.19 0.63 0.22 0.41

0.28 –0.75 0.45 –0.20 0.12 –0.33

0.00 0.00 0.58 0.00 –0.58 0.58

–0.53 0.29 0.63 0.19 0.41 –0.22



Intuition of Distributional Word Similarity

tesgüino



A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

Intuition of Distributional Word Similarity



A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

• From context words humans can guess tesgüino means
• an alcoholic beverage like beer

• Intuition for algorithm: 
• Two words are similar if they have similar word contexts.

Intuition of Distributional Word Similarity



Vector Models

Sparse vector representations:
1. Mutual-information weighted word co-occurrence matrices.

Dense vector representations:
2. Singular value decomposition (and Latent Semantic Analysis).
3. Neural-network-inspired models (skip-grams, CBOW).
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Prediction-based Models

• Skip-gram, Continuous Bag of Words (CBOW) Learn embeddings as part of 
the process of word prediction.

• Advantages:
• Fast, easy to train.
• Available online in the word2vec package.
• Including sets of pretrained embeddings!

Mikolov et al., “Distributed representations of words and phrases and their compositionality,” NeurIPS’13
Mikolov et al., “Efficient estimation of word representations in vector space,” arXiv, 2013



CBOW vs. Skip-Gram 

© machinelearningmastery.com



CBOW vs. Skip-Gram 

Feature CBOW (Continuous Bag of Words) Skip-Gram

Input Context words Target (center) word

Output Target (center) word Context words

Prediction direction Context → Target Target → Context

Suitable for High-frequency words Low-frequency words

Training speed Faster (context is averaged) Slower (more training 
samples per word)

Representation goal Learn embeddings that predict a 
word from its context

Learn embeddings that 
predict context from a word



© https://www.shanelynn.ie/

[[king]] – [[man]] + [[woman]] = [[queen]]

[[paris]] – [[france]] + [[germany]] = [[berlin]]



Average Word Embedding

• Distributed word embeddings can benefit document ranking.
• Even simple models perform very well.
• Average Word Embedding: 

• Compute the average word embedding of the query.
• Compute the average word embedding of candidate documents.
• Compute similarity and rank based on that.



Average Word Embedding

• Limitations:
• Ignores word order
• Context is not used
• Polysemy (multiple meanings of the same word) cannot be resolved

“The bank of the river was flooded.” “bank” = ??? (financial or river?)



Contextualized Word Embeddings

• Each word’s meaning depends on its context.
• Embeddings are computed dynamically for each word in a sentence.
• Implemented using Transformer-based models, like BERT.

Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the 
North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and shor t papers). 2019: 4171-4186.



Contextualized Word Embeddings

• Advantages:
• Context-sensitive
• Captures syntax and semantics
• Strong performance on retrieval, QA, ranking, etc.



Summary

• Local vs. distributed repsenetation.
• Representation as part of prediction.
• Capture word semantics more effectively; based on their context. 
• Average word embedding.
• Contextualized Word Embeddings.



• Thanks for listening. Are there any remaining questions?
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