
Learning to Rank &
Semantic Matching

Information Retrieval - IR0
Yubao Tang

y.tang3@uva.nl

Credit: The majority of this content is derived from the lecture slides created by Philipp Hager and Mohammad
Aliannejadi. Some modifications and supplementary content have been added by Yubao Tang.

1

About me

• Postdoc researcher at UvA (IRLab & AIRLab)

• Previously:
• Ph.D. & M.Sc. Chinese Academy of Sciences,

China
• B.Sc. Sichuan University, China

• Research focus: Generative Information Retrieval &
Recommendation Systems

• Happy to discuss research or course questions —
feel free to reach out!

• Homepage: https://yubaotang11.github.io/

2

Recap

• Text processing
• Advanced ranking methods
• Bag of words
• Inverted indexing for these methods
• Vector Space Model
• Term importance weighting
• Probabilistic ranking methods

3

Today

• Part 1: Learning to rank
• Pointwise methods
• Pairwise methods
• Listwise methods

• Part 2: Semantic matching
• Vocabulary mismatch
• Semantic matching
• Distributed representation

4

Part 1: Learning to Rank

5

6

Signals in Web Search

• Textual Signals
• Query content: text
• Document content: title, page content

• How well does the query text match the document text? [6]
• BM25
• TF-IDF / vector space models
• Semantic matching with LLMs or topic models

7

Signals in Web Search

• But there are many signals beyond text
• Query: type, language
• Document: URLs, images, structure
• User context: location, date, device, search history
• Metadata: popularity, recency, page quality, spam, adult content, …
• External stakeholders: advertisers, auctions, content creators, …

8

Signals in Web Search

• Modern search engines use a lot of features
• Airbnb [10]: > 195 features
• Bing [15]: > 136 features
• Istella [7]: > 220 features
• Yahoo [2]: > 700 features

• How do we combine all of these signals?

9

• Learning to Rank (LTR) is
• “. . . a task to automatically construct a ranking model using training data,

such that the model can sort new objects according to their degrees of
relevance, preference, or importance.” – Liu [13]

10

Learning to Rank

11

Features

• Traditionally LTR used hand-crafted numerical features
• Nowadays, we also use deep learned features
• We can categorize features into:

12

Problem Formulation

13

The goal of learning to rank

• Thus, we have:
• a feature vector for each query-document pair: Ԧ𝑥 𝑞,𝑑 ∈ ℝ𝑚

• a relevance judgment for each query-document pair, e.g.: 𝑦 𝑞,𝑑 ∈ {0, 1,
2, 3, 4}

• A ranking model 𝑓: Ԧ𝑥 → ℝ scores each query-document pair to optimize the
order of items when sorting descendingly by 𝑓 Ԧ𝑥 𝑞,𝑑 = 𝑠 𝑞,𝑑

• How can we learn a ranking model 𝒇?

14

Pointwise methods

15

Pointwise LTR

• Regression: Relevance as a real-valued score [4,9]
• We can use linear regression for our ranking model:

𝑓 𝑥 = 𝑤0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛 = 𝑠

• Each feature has a weight 𝑤, learned to minimize prediction error
• Usually we quantify how far off our predictions are using the mean

squared error (MSE) loss:

𝐿𝑚𝑠𝑒 =
1

𝑛
෍ 𝑦𝑖 − 𝑠𝑖

2

16

Pointwise LTR – MSE

17

Pointwise LTR

• Regression: Relevance as a real-valued score [4, 9]
• Classification: Relevance as unordered categories [3, 14]
• Ordinal regression: Relevance as ordered categories [5, 16]

• What are challenges with these approaches?

18

Problems of pointwise LTR

• Some (solvable) challenges include:
• Class imbalance: We have way more irrelevant than relevant documents
• Feature normalization: Feature distributions can differ greatly between

queries

19

Problems of pointwise LTR

• A more fundamental problem:
• Pointwise methods predict a score for each query-document

independently
• But document scores are fundamentally dependent on each other in a

ranking
• Minimizing a pointwise loss does not always lead to a better ranking

20

Pointwise LTR: A lower loss does not imply a
better ranking

21

𝐿𝑚𝑠𝑒 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑠𝑖
2

Pointwise LTR: A lower loss does not imply a
better ranking

22

𝐿𝑚𝑠𝑒 =1.16 / 5
MRR=1, nDCG=1

Pointwise LTR: A lower loss does not imply a
better ranking

23

𝐿𝑚𝑠𝑒 = 0.77 / 5
MRR=0.2, nDCG=0.39

Pairwise methods

24

Pairwise LTR

25

• Observation: For a good ranking, we only require relative relevance levels:

𝑦𝑖 > 𝑦𝑗 → 𝑠𝑖 > 𝑠𝑗

• How can we optimize a model with pairs of items?

Naïve pairwise model

26

Naïve pairwise model

27

• Let’s (naively) change the ranking model to take document pairs as input:

𝑃 𝑖 > 𝑗 = 𝑓(𝑥𝑖 , 𝑥𝑗)

• But pairwise document inputs are not a good idea:
• This method has quadratic complexity 𝑂(𝑁2) during training and

inference and thus does not scale to many documents
• Pair-wise preferences have to be aggregated and can lead to paradoxical

situations:

𝑠1 > 𝑠2
𝑠2 > 𝑠3
𝑠3 > 𝑠1

Pairwise LTR

28

• A better idea: Let’s keep the ranking model unchanged:
𝑓 Ԧ𝑥 = si

• But the loss function is based on pairs of documents:

𝐿𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑠, 𝑦 = ෍

𝑦𝑖>𝑦𝑗

∅(𝑠𝑖 − 𝑠𝑗)

• We still score one document at-a-time and can sort according to scores,
 but the model is optimized over item pairs

Pairwise LTR

29

• Pairwise loss functions minimize the number of incorrectly ranked pairs:

where 𝑦𝑖 > 𝑦𝑗, but our model falsely predicts 𝑠𝑖 < 𝑠𝑗 .

• Pairwise loss functions generally have the following form:

𝐿𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑠, 𝑦 = ෍

𝑦𝑖>𝑦𝑗

∅(𝑠𝑖 − 𝑠𝑗)

where ∅ can be the:
• Hinge function in RankingSVM [11, 12]: ∅ 𝑧 = max(0,1 − 𝑧) (z) = max(0, 1 − z)
• Exponential function in RankBoost [8]: ∅ 𝑧 = 𝑒−𝑧

• Logistic / Sigmoid function in RankNet [1]: ∅ 𝑧 = log(1 + 𝑒−𝑧)

RankNet

30

RankNet

31

• Introduced by Burges et al. [1] in 2005 to train neural ranking models
• Popular in industry applications and won the ICML 2015 test of time award
• RankNet defines the probability that document i should be ranked over

document j as:

𝑃 𝑖 > 𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑖 − 𝑠𝑗)

• RankNet then uses the log loss between the predicted probabilities for each
pair and their true/target probability: ത𝑃 𝑖 > 𝑗

https://icml.cc/2015/index.html%3Fp=51.html

RankNet

32

Mapping the difference in scores between to items to the
predicted probability 𝑃 𝑖 > 𝑗 using the sigmoid function

RankNet

33

• Now that we have a model prediction for each item pair, where do we get the target
probability of ത𝑃 𝑖 > 𝑗 from?

1. Ask annotators to judge pairs of items (infeasible, it requires 𝑂(𝑁2) annotations)
2. We make up probabilities based on relevance judgments:

• If 𝑦𝑖 > 𝑦𝑗, set ത𝑃 𝑖 > 𝑗 = 1

• If 𝑦𝑖 = 𝑦𝑗, set ത𝑃 𝑖 > 𝑗 = 0.5

• If 𝑦𝑖 < 𝑦𝑗, set ത𝑃 𝑖 > 𝑗 = 0

• These made-up/virtual target probabilities were chosen mainly for convenience as they
simplify the final loss to:

𝐿𝑅𝑎𝑛𝑘𝑁𝑒𝑡 𝑠, 𝑦 = ෍

𝑦𝑖>𝑦𝑗

𝑙𝑜𝑔(1 + 𝑒−(𝑠𝑖−𝑠𝑗))

https://icml.cc/2015/index.html%3Fp=51.html

Pairwise LTR

34

What are problems of pairwise methods?
The made-up target probabilities ത𝑃 ∈ 0, 0.5, 1 are quite crude, since any
difference in relevance labels is treated equally. For example:

P(4 > 1) = 1.0
P(4 > 3) = 1.0

Not very elegant, but works well in practice. . .
A more important limitation: We treat all item pairs as equally important,
but are they?

Pairwise LTR: Minimizing pairwise errors

35

Pairwise LTR: Minimizing pairwise errors

Reducing pairwise errors from 13 (left) to 11 (right),
while top-heavy measures like MRR and nDCG degrade [1, Figure 1].

36

Pairwise LTR: Minimizing pairwise errors

The black arrows denote the RankNet gradients,
while what we’d arguably want are the red arrows [1, Figure 1].

37

Optimization Units and Objectives in LTR Methods

38

Method Optimization Unit Optimization Objective Required Label Type

Pointwise Individual item Predict scores close to ground-
truth relevance

Absolute labels (e.g.,
0/1 or grades)

Pairwise Item pair Learn which item is more relevant Relative order
between items

Evaluation Metrics and What They Measure

Metric Evaluated Unit What It Measures

NDCG The entire ranked list Penalizes relevant documents that appear
lower in the list

MRR Position of the first relevant item How early the first relevant item appears

Hits@K Top-K retrieved items Whether at least one relevant item appears in
the top K

39

There is a misalignment:
pointwise and pairwise methods optimize for local accuracy (on items or
pairs), while ranking metrics care about global ordering, especially at the top
of the list.

Listwise methods

40

LambdaRank

• Motivation: Can we directly optimize IR metrics such as nDCG, Precision, and MRR?

• Reciprocal Rank: Reciprocal of the rank of the first relevant item after sorting by scores:

𝑅𝑅 =
1

𝑟𝑎𝑛𝑘𝑖

• Discounted Cumulative Gain:

𝐷𝐶𝐺 =
1

𝑛
෍

𝑖=1

𝑛
2𝑦𝑖 − 1

log(𝑖 + 1)

• Non-smooth and discontinuous
• Ranking metrics typically only depend on the rank of an item, not on its score
• Model scores change smoothly, the ranks of documents change abruptly

41

Listwise LTR

• Non-differentiable
• Ranking metrics rely on a sorting operation that is non-smooth and

discontinuous w.r.t. to model parameters θ:
𝜕𝑅𝑅

𝜕𝜃
=? ? ?

𝜕𝐷𝐶𝐺

𝜕𝜃
=? ? ?

• Thus, ranking metrics are either flat (with zero gradient) or discontinuous
• Holy grail of LTR: Finding methods that (indirectly) optimize listwise IR metrics

42

LambdaRank

43

LambdaRank

• Observations:
• To train a model, we don’t need the costs just the gradients (of the costs

w.r.t model scores)
• Gradients should be larger for pairs that have a greater impact on our

metric

44

LambdaRank

• Idea: Scale the RankNet gradients for each document pair based on the
change in nDCG we would observe after swapping the two items:

𝐿𝐿𝑎𝑚𝑏𝑑𝑎𝑅𝑎𝑛𝑘 𝑠, 𝑦 = ෍

𝑦𝑖>𝑦𝑗

∆𝑁𝐷𝐶𝐺 𝑖, 𝑗 log(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑖−𝑠𝑗)

45

Conclusion

46

Summary

• Today’s search and recommender systems use many signals for ranking.
• These signals can be computed beforehand (static features) or have to be

computed when the user submits their query (dynamic features).
• Learning to rank is a method to learn models that automatically combine

these query and document features into a single ranking.

47

Summary

48

Method Optimization
Unit

Optimization
Objective

Required Label
Type

Alignment with
Ranking Metrics

Pointwise Individual item
Predict scores close

to ground-truth
relevance

Absolute labels
(e.g., 0/1 or grades)

Ignores relative or
positional ranking

Pairwise Item pair Learn which item is
more relevant

Relative order
between items

Treats all pairwise
errors equally,
regardless of

position

Listwise Entire ranked
list

Optimize the quality
of the overall ranking

(e.g., NDCG)

Full relevance list or
rankings

Directly accounts
for ranking quality

and position impact

Summary

49

Aspect RankNet LambdaRank

Method type Pairwise Pairwise-based listwise methods (metric-
aware)

Loss function Cross-entropy on pairwise probabilities No explicit loss; gradients defined directly

Uses
sigmoid? Yes, to model pairwise preference probability No need for sigmoid

Ranking
metric aware? No, all pairs treated equally Yes, swaps weighted by impact on metric

(e.g., NDCG)

Gradient
computation From loss function Directly defined by ΔNDCG (or other

metric changes)

Improvement
over? Pointwise methods RankNet

Part 2: Semantic Matching

Contents

• Vocabulary mismatch.
• Semantic matching.
• Distributed representation.

Popular Italian cities banning water in
worst drought in 70 years. A severe
heatwave and lack of rainfall have led
to disaster in Italy, especially in cities
with high population, like Rome.

Stolen artefacts recovered by police
go on display in new Rome museum.
Italy has been so successful in
regaining ancient artworks and
artefacts illegally exported from the
country.

According to the latest statistics, the
number of people living in Italy’s
capital has risen by 10%. As of 2017, it
has reached 2.9 million.

D
oc

um
en

t 1
D

oc
um

en
t 2

D
oc

um
en

t 3

What is the population of Rome?

You

???

BM25

???

Popular Italian cities banning water in
worst drought in 70 years. A severe
heatwave and lack of rainfall have led
to disaster in Italy, especially in cities
with high population, like Rome.

Stolen artefacts recovered by police go
on display in new Rome museum.
Italy has been so successful in
regaining ancient artworks and
artefacts illegally exported from the
country.

According to the latest statistics, the
number of people living in Italy’s
capital has risen by 10%. As of 2017, it
has reached 2.9 million.

D
oc

um
en

t 1
D

oc
um

en
t 2

D
oc

um
en

t 3

What is the population of Rome?

You

???

BM25

???

Dimensionality Reduction

• Vector Space Model reminder: each term is a dimension.
• High dimensional data:

• Vectors in a high-dimensional space.
• Not all possible vectors appear in the data set (sparse).
• This data has intrinsic dimensionality 𝑘 (where 𝑘≪𝑛).

• Latent semantic analysis (LSA): relationship between documents and terms
• Singular Value Decomposition (SVD)

Singular Value Decomposition

• Σ is a diagonal matrix
• Σ contains the

singular values in
decreasing order
(𝜎1 > 𝜎2 > ⋯ > 𝜎𝑛)

𝑛 terms

𝑚 documents 𝑟 𝑟 𝑚

𝑟

=

An example of SVD: The matrix X

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

wood 1 0 0 1 1 0

tree 0 0 0 1 0 1

An example of SVD ship –0.44 –0.30 0.57 0.58 0.25

boat –0.13 –0.33 –0.59 0.00 0.73

ocean –0.48 –0.51 –0.37 0.00 –0.61

wood –0.70 0.35 0.15 –0.58 0.16

tree –0.26 0.65 –0.41 0.58 –0.09

2.16 0.00 0.00 0.00 0.00

0.00 1.59 0.00 0.00 0.00

0.00 0.00 1.28 0.00 0.00

0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.39

d1 d2 d3 d4 d5 d6

–0.75 –0.28 –0.20 –0.45 –0.33 –0.12

–0.29 –0.53 –0.19 0.63 0.22 0.41

0.28 –0.75 0.45 –0.20 0.12 –0.33

0.00 0.00 0.58 0.00 –0.58 0.58

–0.53 0.29 0.63 0.19 0.41 –0.22

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

wood 1 0 0 1 1 0

tree 0 0 0 1 0 1

=

An example of SVD: The matrix U

• One row per term.

• Think of the dimensions as semantic dimensions that capture distinct topics
like politics, sports, economics.
• Each number 𝑢𝑖𝑗 in the matrix indicates how strongly related term 𝑖 is to

the topic represented by semantic dimension 𝑗 .

ship –0.44 –0.30 0.57 0.58 0.25

boat –0.13 –0.33 –0.59 0.00 0.73

ocean –0.48 –0.51 –0.37 0.00 –0.61

wood –0.70 0.35 0.15 –0.58 0.16

tree –0.26 0.65 –0.41 0.58 –0.09

An example of SVD: The matrix Σ

• This is a square, diagonal matrix.

• The magnitude of the singular value measures the importance of the
corresponding semantic dimension.

• We’ll make use of this by omitting unimportant dimensions.

2.16 0.00 0.00 0.00 0.00

0.00 1.59 0.00 0.00 0.00

0.00 0.00 1.28 0.00 0.00

0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.39

An example of SVD: The matrix V

• One column per document.

• These are again the semantic dimensions from the term matrix 𝑈 that capture
distinct topics like politics, sports, economics.
• Each number 𝑣𝑖𝑗 in the matrix indicates how strongly related document 𝑖

is to the topic represented by semantic dimension 𝑗.

d1 d2 d3 d4 d5 d6

–0.75 –0.28 –0.20 –0.45 –0.33 –0.12

–0.29 –0.53 –0.19 0.63 0.22 0.41

0.28 –0.75 0.45 –0.20 0.12 –0.33

0.00 0.00 0.58 0.00 –0.58 0.58

–0.53 0.29 0.63 0.19 0.41 –0.22

How to use SVD in LSA

• Each singular value tells us how important its dimension is.

• By setting less important dimensions to zero, we keep the important
information, but get rid of the “details”.

• These details:
• may be noise – in that case, reduced LSA is a better representation

because it is less noisy;
• make things dissimilar that should be similar – again reduced LSI is a

better representation because it represents similarity better.

Latent Semantic
Analysis

ship –0.44 –0.30 0.57 0.58 0.25

boat –0.13 –0.33 –0.59 0.00 0.73

ocean –0.48 –0.51 –0.37 0.00 –0.61

wood –0.70 0.35 0.15 –0.58 0.16

tree –0.26 0.65 –0.41 0.58 –0.09

2.16 0.00 0.00 0.00 0.00

0.00 1.59 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

d1 d2 d3 d4 d5 d6

–0.75 –0.28 –0.20 –0.45 –0.33 –0.12

–0.29 –0.53 –0.19 0.63 0.22 0.41

0.28 –0.75 0.45 –0.20 0.12 –0.33

0.00 0.00 0.58 0.00 –0.58 0.58

–0.53 0.29 0.63 0.19 0.41 –0.22

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

wood 1 0 0 1 1 0

tree 0 0 0 1 0 1

=

Choice of 𝑘 (= # of dimensions)

• The choice of 𝑘 is critical.

• Ideally, we want a value of 𝑘:
• large enough to fit all the real structure in the data;
• small enough so that we do not also fit the sampling error or unimportant

details.

• The proper way to make such choices is an open issue.

• Typically, we use different values of 𝑘 and compare performance based on
evaluation measures.

Ranking

1. Apply SVD.
2. Reduce dimensionality.
3. Reconstruct matrix with reduced dimensionality.
4. Query representation.
5. Ranking.

Example
• Extracted topics (dimensions):

• Topic 0: jpeg image file gif images graphics format color
• Topic 1: edu graphics pub data mail ftp 128 ray 3d send
• Topic 2: jehovah god lord jesus christ father earth people
• Topic 3: space earth planet vanue spacecraft solar surface

Summary

• LSA can capture semantics of terms.
• SVD can be used to reduce dimensionality.
• Address vocabulary mismatch.
• Represent documents and queries using LSA topics.
• Compute similarity and rank based on that.

Distributed Representation

Local Representation

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0

boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0

wood 1 0 0 1 1 0

tree 0 0 0 1 0 1

Distributed Representation

• The features may have direct and obvious relations to the original input but
they have comparative values.

d1 d2 d3 d4 d5 d6

–0.75 –0.28 –0.20 –0.45 –0.33 –0.12

–0.29 –0.53 –0.19 0.63 0.22 0.41

0.28 –0.75 0.45 –0.20 0.12 –0.33

0.00 0.00 0.58 0.00 –0.58 0.58

–0.53 0.29 0.63 0.19 0.41 –0.22

Intuition of Distributional Word Similarity

tesgüino

A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

Intuition of Distributional Word Similarity

A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

• From context words humans can guess tesgüino means
• an alcoholic beverage like beer

• Intuition for algorithm:
• Two words are similar if they have similar word contexts.

Intuition of Distributional Word Similarity

Vector Models

Sparse vector representations:
1. Mutual-information weighted word co-occurrence matrices.

Dense vector representations:
2. Singular value decomposition (and Latent Semantic Analysis).
3. Neural-network-inspired models (skip-grams, CBOW).

73

Prediction-based Models

• Skip-gram, Continuous Bag of Words (CBOW) Learn embeddings as part of
the process of word prediction.

• Advantages:
• Fast, easy to train.
• Available online in the word2vec package.
• Including sets of pretrained embeddings!

Mikolov et al., “Distributed representations of words and phrases and their compositionality,” NeurIPS’13
Mikolov et al., “Efficient estimation of word representations in vector space,” arXiv, 2013

CBOW vs. Skip-Gram

© machinelearningmastery.com

CBOW vs. Skip-Gram

Feature CBOW (Continuous Bag of Words) Skip-Gram

Input Context words Target (center) word

Output Target (center) word Context words

Prediction direction Context → Target Target → Context

Suitable for High-frequency words Low-frequency words

Training speed Faster (context is averaged) Slower (more training
samples per word)

Representation goal Learn embeddings that predict a
word from its context

Learn embeddings that
predict context from a word

© https://www.shanelynn.ie/

[[king]] – [[man]] + [[woman]] = [[queen]]

[[paris]] – [[france]] + [[germany]] = [[berlin]]

Average Word Embedding

• Distributed word embeddings can benefit document ranking.
• Even simple models perform very well.
• Average Word Embedding:

• Compute the average word embedding of the query.
• Compute the average word embedding of candidate documents.
• Compute similarity and rank based on that.

Average Word Embedding

• Limitations:
• Ignores word order
• Context is not used
• Polysemy (multiple meanings of the same word) cannot be resolved

“The bank of the river was flooded.” “bank” = ??? (financial or river?)

Contextualized Word Embeddings

• Each word’s meaning depends on its context.
• Embeddings are computed dynamically for each word in a sentence.
• Implemented using Transformer-based models, like BERT.

Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the
North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and shor t papers). 2019: 4171-4186.

Contextualized Word Embeddings

• Advantages:
• Context-sensitive
• Captures syntax and semantics
• Strong performance on retrieval, QA, ranking, etc.

Summary

• Local vs. distributed repsenetation.
• Representation as part of prediction.
• Capture word semantics more effectively; based on their context.
• Average word embedding.
• Contextualized Word Embeddings.

• Thanks for listening. Are there any remaining questions?

83

References
[1] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. Learning to
rank using gradient descent. In Proceedings of the International Conference on Machine Learning (ICML), pages 89–96,
2005. doi: 10.1145/1102351.1102363. URL https://doi.org/10.1145/1102351.1102363.

[2] Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Proceedings of the Learning to Rank
Challenge, volume 14 of Proceedings of Machine Learning Research (PMLR),pages 1–24, 6 2011. URL
https://proceedings.mlr.press/v14/chapelle11a.html.

[3] William S. Cooper, Fredric C. Gey, and Daniel P. Dabney. Probabilistic retrieval based on stagedlogistic regression.
In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 198–210, 1992. doi:10.1145/133160.133199. URL https://doi.org/10.1145/133160.133199.

[4] David Cossock and Tong Zhang. Subset ranking using regression. In Proceedings of the Annual Conference on
Learning Theory (COLT), pages 605–619, 2006. doi: 10.1007/11776420 44. URL https://doi.org/10.1007/11776420_44.

[5] Koby Crammer and Yoram Singer. Pranking with ranking. In Advances in Neural Information Processing Systems
(NIPS), volume 14, 2001. URL
https://proceedings.neurips.cc/paper_files/paper/2001/file/5531a5834816222280f20d1ef9e95f69-Paper.pdf.

[6] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Information retrieval in practice, volume 520.
Addison-Wesley Reading, 2010.

84

https://proceedings.mlr.press/v14/chapelle11a.html

References
[7] Domenico Dato, Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, and Nicola Tonellotto. The istella22 dataset:
Bridging traditional and neural learning to rank evaluation. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pages 3099–3107, 2022. doi: 10.1145/3477495.3531740. URL
https://doi.org/10.1145/3477495.3531740.
[8] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research (JMLR), 4:933–969, 2003. ISSN 1532-4435.
[9] Norbert Fuhr. Optimum polynomial retrieval functions based on the probability ranking principle. ACM Transactions on
Information Systems (TOIS), 7(3):183–204, 1989. ISSN 1046-8188. doi: 10.1145/65943.65944. URL
https://doi.org/10.1145/65943.65944.
[10] Malay Haldar, Mustafa Abdool, Prashant Ramanathan, Tao Xu, Shulin Yang, Huizhong Duan, Qing Zhang, Nick Barrow-
Williams, Bradley C. Turnbull, Brendan M. Collins, and Thomas Legrand. Applying deep learning to Airbnb search. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 1927–1935,
2019. doi: 10.1145/3292500.3330658. URL https://doi.org/10.1145/3292500.3330658.
[11] Ralf Herbrich, Thore Graepel, and Klause Obermayer. Large margin rank boundaries for ordinal regression. In Advances in
Large Margin Classifiers, chapter 7, pages 115–132. The MIT Press, 1999. URL
http://www.herbrich.me/papers/nips98_ordinal.pdf.
[12] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 133–142, 2002. doi: 10.1145/775047.775067. URL
https://doi.org/10.1145/775047.775067.
[13] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3):225–331, 2009.
doi: 10.1561/1500000016. URL https://doi.org/10.1561/1500000016.

85

https://doi.org/10.1145/65943.65944

References
[14] Ramesh Nallapati. Discriminative models for information retrieval. In Proceedings of the Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pages 64–71, 2004. doi:
10.1145/1008992.1009006. URL https://doi.org/10.1145/1008992.1009006.

[15] Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597, 2013. URL
http://arxiv.org/abs/1306.2597.

[16] Amnon Shashua and Anat Levin. Ranking with large margin principle: Two approaches. In Advances in Neural
Information Processing Systems (NIPS), volume 15, 2002. URL
https://proceedings.neurips.cc/paper_files/paper/2002/file/ 51de85ddd068f0bc787691d356176df9-Paper.pdf.

86

https://proceedings.neurips.cc/paper_files/paper/2002/file/

	Slide 1: Learning to Rank & Semantic Matching
	Slide 2: About me
	Slide 3: Recap
	Slide 4: Today
	Slide 5: Part 1: Learning to Rank
	Slide 6:
	Slide 7: Signals in Web Search
	Slide 8: Signals in Web Search
	Slide 9: Signals in Web Search
	Slide 10:
	Slide 11: Learning to Rank
	Slide 12: Features
	Slide 13: Problem Formulation
	Slide 14: The goal of learning to rank
	Slide 15: Pointwise methods
	Slide 16: Pointwise LTR
	Slide 17: Pointwise LTR – MSE
	Slide 18: Pointwise LTR
	Slide 19: Problems of pointwise LTR
	Slide 20: Problems of pointwise LTR
	Slide 21: Pointwise LTR: A lower loss does not imply a better ranking
	Slide 22: Pointwise LTR: A lower loss does not imply a better ranking
	Slide 23: Pointwise LTR: A lower loss does not imply a better ranking
	Slide 24: Pairwise methods
	Slide 25: Pairwise LTR
	Slide 26: Naïve pairwise model
	Slide 27: Naïve pairwise model
	Slide 28: Pairwise LTR
	Slide 29: Pairwise LTR
	Slide 30: RankNet
	Slide 31: RankNet
	Slide 32: RankNet
	Slide 33: RankNet
	Slide 34: Pairwise LTR
	Slide 35: Pairwise LTR: Minimizing pairwise errors
	Slide 36: Pairwise LTR: Minimizing pairwise errors
	Slide 37: Pairwise LTR: Minimizing pairwise errors
	Slide 38: Optimization Units and Objectives in LTR Methods
	Slide 39: Evaluation Metrics and What They Measure
	Slide 40: Listwise methods
	Slide 41: LambdaRank
	Slide 42: Listwise LTR
	Slide 43: LambdaRank
	Slide 44: LambdaRank
	Slide 45: LambdaRank
	Slide 46: Conclusion
	Slide 47: Summary
	Slide 48: Summary
	Slide 49: Summary
	Slide 50: Part 2: Semantic Matching
	Slide 51: Contents
	Slide 52
	Slide 53
	Slide 54: Dimensionality Reduction
	Slide 55: Singular Value Decomposition
	Slide 56: An example of SVD: The matrix X
	Slide 57: An example of SVD
	Slide 58: An example of SVD: The matrix U
	Slide 59: An example of SVD: The matrix cap sigma
	Slide 60: An example of SVD: The matrix V
	Slide 61: How to use SVD in LSA
	Slide 62: Latent Semantic Analysis
	Slide 63: Choice of k (= # of dimensions)
	Slide 64: Ranking
	Slide 65: Example
	Slide 66: Summary
	Slide 67: Distributed Representation
	Slide 68: Local Representation
	Slide 69: Distributed Representation
	Slide 70: Intuition of Distributional Word Similarity
	Slide 71: Intuition of Distributional Word Similarity
	Slide 72: Intuition of Distributional Word Similarity
	Slide 73: Vector Models
	Slide 74: Prediction-based Models
	Slide 75: CBOW vs. Skip-Gram
	Slide 76: CBOW vs. Skip-Gram
	Slide 77
	Slide 78: Average Word Embedding
	Slide 79: Average Word Embedding
	Slide 80: Contextualized Word Embeddings
	Slide 81: Contextualized Word Embeddings
	Slide 82: Summary
	Slide 83:
	Slide 84: References
	Slide 85: References
	Slide 86: References

