

Recommender Systems

Lecture 4: Generative approaches to recommender systems

Yubao Tang, Kidist Amde Mekonnen University of Amsterdam June 5, 2025

y.tang3@uva.nl, k.a.mekonnen@uva.nl

Where are we?

- Lecture 1
 - Introduction to RecSys
- Lecture 2
 - Evaluation in RecSys
- Lecture 3
 - a. Sequential RecSys
 - b. Large Language Model-based RecSys
- Lecture 4
 - a. Generative models in RecSys
 - b. Case studies in GenRec

Acknowledgements

This lecture is based on a number of published papers.

Part 1 Generative models in recommender system

Generative models in RecSys

- Generative models are used in multiple ways:
 - VAE for embedding generation
 - Language models for review/explanation generation
 - RAG for text-to-item generation

Figure 1: VAE-based recommender systems [Fraihat et al., 2024]

Generative models in RecSys

Figure 2: The generative model constructs data [Wang et al., 2019]

 The core mechanism of most modern recommendation models—including matrix factorization and deep learning approaches—relies on matching user and item embeddings in a latent space

Limitations of embedding-based recommenders

- Tightly coupled with the indexing structure
- Matching is limited to item-level semantic similarity (e.g., a simple matching function over fixed-length embedding vectors)

Is this simple fixed-length embedding interaction truly enough for recommendation?

Terminology clarification

- Embedding-based methods using generative structure models (GenStruct):
 Use generative models to learn user/item representations or assist in reranking,
 but still rely on embedding matching
- ullet Generative recommendation (GenRec): User history o next item identifier
- Generative information retrieval (GenIR): Query → relevant document identifier
- Note: Some papers use "generative recommendation" broadly to include both GenStruct and GenRec above

GenStruct vs GenRec

Figure 3: Mechanism: matching vs. association / generation

Definition: Generative recommendation (GenRec)

- Definition: A recommendation paradigm where the model directly generates item identifiers (ID) given a user's interaction history [Rajput et al., 2023]
- The task is cast as a sequence-to-sequence generation problem:
 - Input: user interaction sequence
 - Output: next item ID
- No explicit index is required

Figure 4: The GenRec model generates the next item ID [Zhu et al., 2024]

From generative retrieval to generative recommendation

• **Generative information retrieval (GenIR):** A GenIR model directly generates relevant document identifiers in a sequence-to-sequence fashion, for a query

From generative retrieval to generative recommendation

- **Generative information retrieval (GenIR):** A GenIR model directly generates relevant document identifiers in a sequence-to-sequence fashion, for a query
- Why it matters:
 - Moves beyond index-based retrieval
 - Enables end-to-end learning with strong generalization

From generative retrieval to generative recommendation

- **Generative information retrieval (GenIR):** A GenIR model directly generates relevant document identifiers in a sequence-to-sequence fashion, for a query
- Why it matters:
 - Moves beyond index-based retrieval
 - Enables end-to-end learning with strong generalization
- Inspiration for GenRec:
 - Items ≡ documents
 - User history ≡ query
 - Next-item prediction ≡ identifier generation

Advantages of GenRec [Rajput et al., 2023]

- Unified paradigm: Item corpus is indexed implicitly via a generative model
- Flexible conditioning: Easily incorporate user history, context, and auxiliary information as prompt input

• ..

Questions, ...

Basic workflow of GenRec models

Basic pipeline

- Input: tokenized user interaction history
- Output: item ID via autoregressive decoding
- Model architecture: encoder-decoder

Figure 5: GenRec pipeline [Si et al., 2024]

Identifiers in GenRec

• What is an identifier? A unique, textual representation of an item (e.g., "item_12345"), used as the decoding target

Identifiers in GenRec

- What is an identifier? A unique, textual representation of an item (e.g., "item_12345"), used as the decoding target
- Why identifiers?
 - Serve as a symbolic reference to items in the catalog
 - Make it possible to reframe recommendation as a sequence generation problem

Identifiers in GenRec

- What is an identifier? A unique, textual representation of an item (e.g., "item_12345"), used as the decoding target
- Why identifiers?
 - Serve as a symbolic reference to items in the catalog
 - Make it possible to reframe recommendation as a sequence generation problem
- Output format: Generated as token sequences (e.g., "item", "_", "12", "345")

Examples

- Random identifiers [Geng et al., 2022]
 - Semantically meaningless: the token structure contains no information about item content (e.g., "item_12345")
 - The model should learn to map user history to arbitrary string tokens
 - Harder to generalize, especially to unseen or cold-start items [Rajput et al., 2023]
- Semantic identifiers [Rajput et al., 2023]
 - Residual quantization codes
 - Improving learnability and generalization

Training

 Given the user history, the model learns to maximize the likelihood of the next item identifier

Figure 6: Training illustration [Rajput et al., 2023]

Inference

• Beam / greedy search

Figure 7: Beam search illustration [Li et al., 2020]

Inference

- Constrained beam search: ensure only valid IDs
- Prefix tree structure:
 - Nodes are annotated with tokens from the vocabulary
 - For each node, its children indicate all the allowed continuations from the prefix defined traversing the trie from the root to it

Figure 8: Constrained decoding with a prefix tree [Si et al., 2024]

Recent advances in GenRec

P5

[Geng et al., 2022]

(Randomly IDs)

Part 2

Case studies in GenRec: TIGER and SEATER

Recommender systems with generative retrieval

TIGER [Rajput et al., 2023]

- Token-based Item Generation for End-to-end Recommendation (TIGER)
- **Key idea:** Reformulate recommendation as sequence-to-sequence generation
- Uses a shared encoder-decoder architecture, trained to decode item IDs

Figure 9: TIGER overview [Rajput et al., 2023]

Identifier

- Goal: Represent each item with a structured, semantically meaningful identifier
- Steps:
 - Encode (Sentence-T5) item metadata into dense vectors
 - lacktriangle Apply **residual quantization** (RQ) ightarrow a sequence of discrete tokens

Figure 10: ID generation [Rajput et al., 2023]

Why semantic item IDs matter

- Arbitrary IDs (e.g., item123) are difficult to be learned, since there is a big semantic gap between the model vocabulary and IDs
- Semantic IDs provide structured, informative targets for generative modeling
- Advantages:
 - Generalization: Easier for models to decode and recover unseen or rare items
 - Compositionality: Token overlap reflects semantic similarity across items

Training pipeline

- Stage 1: Train the VAE-based ID generator
 - Item metadata \rightarrow encode \rightarrow RQ
- Stage 2: Generate item IDs
 - Each item is assigned a multi-token ID from learned codebooks
 - IDs are fixed and used as targets in next stage
- Stage 3: Train the GenRec model
 - Autoregressive model trained to predict next item's ID based on user history

- Step 1: Encode item metadata
 - \blacksquare Metadata (title, category, etc.) encoded to a dense vector z via an encoder.
- Step 2: Initialize residual
 - Initialize residual $r_1 = z$

- Step 3: Iterative quantization
 - For each level i = 1 to m:
 - Select the closest codeword c_i from codebook V_i :

$$c_i = \arg\min_{v \in \mathcal{V}_i} \|r_i - v\|$$

• Update residual: $r_{i+1} = r_i - c_i$

Figure 11: RQ pipeline

- Step 4: Form IDs
 - The item ID is the token sequence: $[c_1, c_2, ..., c_m]$
 - \blacksquare Each c_i is interpretable and belongs to a specific semantic level

- Step 4: Form IDs
 - The item ID is the token sequence: $[c_1, c_2, ..., c_m]$
 - \blacksquare Each c_i is interpretable and belongs to a specific semantic level
- Loss:

$$\mathcal{L}_{\mathsf{VAE}} = \mathcal{L}_{\mathsf{recon}} + \beta \cdot \mathsf{KL}(q(z|x)||p(z))$$

- Step 4: Form IDs
 - The item ID is the token sequence: $[c_1, c_2, ..., c_m]$
 - \blacksquare Each c_i is interpretable and belongs to a specific semantic level
- Loss:

$$\mathcal{L}_{VAE} = \mathcal{L}_{recon} + \beta \cdot \mathsf{KL}(q(z|x)||p(z))$$

Once trained, the encoder + RQ is used to generate IDs for downstream training

Training the GenRec model

- **Input:** A sequence of previously interacted item IDs
- Target: The ID tokens of the next item
- Training strategy:
 - Teacher forcing
 - lacktriangle Use cross-entropy loss on token prediction (MLE)

Inference

- Beam search or greedy decoding
- Post-processing: Map generated ID tokens back to item via lookup table or similarity match
- Flexible decoding: Support diverse decoding (e.g., sampling, diverse beam)

Results

- Evaluated on Amazon Product Recommendation datasets (Books, Beauty, etc.)
- Compared against:
 - Traditional RecSys (SASRec, GRU4Rec)
 - Retrieval+Generation (Two-stage)
- TIGER outperforms the GenRec baseline P5

Limitations of TIGER

- Token-based decoding still struggles with:
 - Out-of-catalog items
 - No structural encoding of topic hierarchy or semantic relations
- No explicit modeling of:
 - Fairness, diversity, or long-tail bias
 - Personalized decoding strategies
 - Discriminative training signals

Questions, ...

Generative retrieval with semantic treestructured identifiers and contrastive learning

SEATER [Si et al., 2024]

- Semantic trEe-based generAtive reTriEval with contRastive learning (SEATER)
- Compared to TIGER:
 - TIGER uses flat semantic IDs; SEATER introduces tree structure
 - SEATER unifies generative & contrastive signals

Tree-structured item IDs

- **Idea**: Use tree-structured identifiers to reflect topic granularity
- Balanced K-ary tree structure
- Benefits:
 - Identifiers encode semantic hierarchy
 - Better generalization and interpretability

Figure 12: Tree-structured IDs [Si et al., 2024]

Constructing tree-structured IDs

- Input: Item embedding retrieved from pretrained SASRec model
- Apply m-level RQ to encode the item embedding into a discrete token sequence
- Balanced *k*-ary tree structure:
 - Each level corresponds to a specific semantic granularity
 - The token path forms a leaf-to-root path in a semantic tree
 - lacktriangle Token space partitioned into subtrees (e.g., genre o subgenre o item)

Training: Generation loss

• Backbone: T5

• Input: User history sequence

• Target: Structured ID tokens

• **Objective**: MLE loss/ cross-entropy loss

Figure 13: MLE loss [Si et al., 2024]

Training: Alignment loss

- The parent token should align closely with the centroid of its child tokens
- This loss pulls the representations of tokens with parent-child relationships closer and pushes the representations of unrelated tokens apart

Figure 14: Alignment loss [Si et al., 2024]

Training: Ranking contrastive loss

- Goal: Train the model to distinguish similar IDs by learning hierarchical structure
- The intuition: longer shared prefixes \rightarrow more similar items in the hierarchy
- Approach:
 - Select sampled item ID with varying prefix lengths shared with the true ID
 - Use triplet contrastive loss to let the decoder learn ranking preferences based on these prefix overlaps

Figure 15: Ranking loss [Si et al., 2024]

Training: Total loss

• Combine three objectives with tuned weights:

$$\mathcal{L} = \mathcal{L}_{\mathsf{gen}} + \lambda_{\mathsf{a}} \cdot \mathcal{L}_{\mathsf{align}} + \lambda_{\mathsf{r}} \cdot \mathcal{L}_{\mathsf{rank}}$$

Results

• Datasets: Yelp, Books, News, Micro-video

• Findings:

- SEATER outperforms TIGER
- Tree structure + ranking contrastive loss improves both generalization and robustness.

Limitations

• Limitations:

- Tree-based IDs still require careful design poor trees lead to bad generalization
- Does not yet support real-time dynamic index updates
- High training complexity due to hybrid loss terms

• Future work:

- Explore neural tree construction (learnable hierarchies)
- Integrate reinforcement signals for better decoding feedback
- Apply to recommendation and multi-modal retrieval

 ${\sf Questions,\dots}$

References i

- S. Fraihat, Q. Shambour, M. A. Al-Betar, and S. N. Makhadmeh. Variational autoencoders-based algorithm for multi-criteria recommendation systems. *Algorithms*, 17(12):561, 2024.
- S. Geng, S. Liu, Z. Fu, Y. Ge, and Y. Zhang. Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In *Proceedings of the 16th ACM conference on recommender systems*, pages 299–315, 2022.
- Q. Li, X. Zhang, J. Xiong, W.-M. Hwu, and D. Chen. Efficient methods for mapping neural machine translator on fpgas. *IEEE Transactions on Parallel and Distributed Systems*, 32(7):1866–1877, 2020.
- A. Moreno, H. Castro, and M. Riveill. Client-side hybrid rating prediction for recommendation. In *User Modeling, Adaptation, and Personalization: 22nd International Conference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014. Proceedings 22*, pages 369–380. Springer, 2014.
- S. Rajput, N. Mehta, A. Singh, R. Hulikal Keshavan, T. Vu, L. Heldt, L. Hong, Y. Tay, V. Tran, J. Samost, et al. Recommender systems with generative retrieval. *Advances in Neural Information Processing Systems*, 36:10299–10315, 2023.
- F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. *Recommender Systems Handbook*. Springer, 2011.

References ii

- Z. Si, Z. Sun, J. Chen, G. Chen, X. Zang, K. Zheng, Y. Song, X. Zhang, J. Xu, and K. Gai. Generative retrieval with semantic tree-structured identifiers and contrastive learning. In *Proceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region*, pages 154–163, 2024.
- Q. Wang, H. Yin, H. Wang, Q. V. H. Nguyen, Z. Huang, and L. Cui. Enhancing collaborative filtering with generative augmentation. In *Proceedings of the 25th ACM SIGKDD International Conference* on Knowledge Discovery & Data Mining, pages 548–556, 2019.
- Y. Wang, J. Xun, M. Hong, J. Zhu, T. Jin, W. Lin, H. Li, L. Li, Y. Xia, Z. Zhao, et al. Eager: Two-stream generative recommender with behavior-semantic collaboration. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 3245–3254, 2024.
- J. Zhu, M. Jin, Q. Liu, Z. Qiu, Z. Dong, and X. Li. Cost: Contrastive quantization based semantic tokenization for generative recommendation. In *Proceedings of the 18th ACM Conference on Recommender Systems*, pages 969–974, 2024.