
Recommender Systems

Lecture 4: Generative approaches to recommender systems

Yubao Tang, Kidist Amde Mekonnen

University of Amsterdam

June 5, 2025

y.tang3@uva.nl, k.a.mekonnen@uva.nl

Where are we?

• Lecture 1

Introduction to RecSys

• Lecture 2

Evaluation in RecSys

• Lecture 3

a. Sequential RecSys

b. Large Language Model-based RecSys

• Lecture 4

a. Generative models in RecSys

b. Case studies in GenRec

2 / 61

Acknowledgements

This lecture is based on a number of published papers.

3 / 61

Part 1

Generative models in recommender system

4 / 61

Generative models in RecSys

• Generative models are used in multiple ways:

VAE for embedding generation

Language models for review/explanation generation

RAG for text-to-item generation

Figure 1: VAE-based recommender systems [Fraihat et al., 2024]

5 / 61

Generative models in RecSys

Figure 2: The generative model constructs data [Wang et al., 2019]

• The core mechanism of most modern recommendation models—including matrix

factorization and deep learning approaches—relies on matching user and item

embeddings in a latent space

6 / 61

Limitations of embedding-based recommenders

• Tightly coupled with the indexing structure

• Matching is limited to item-level semantic similarity (e.g., a simple matching

function over fixed-length embedding vectors)

7 / 61

Is this simple fixed-length embedding interac-
tion truly enough for recommendation?

8 / 61

Terminology clarification

• Embedding-based methods using generative structure models (GenStruct):

Use generative models to learn user/item representations or assist in reranking,

but still rely on embedding matching

• Generative recommendation (GenRec): User history → next item identifier

• Generative information retrieval (GenIR): Query → relevant document

identifier

• Note: Some papers use “generative recommendation” broadly to include both

GenStruct and GenRec above

9 / 61

GenStruct vs GenRec

Figure 3: Mechanism: matching vs. association / generation

10 / 61

Definition: Generative recommendation (GenRec)

• Definition: A recommendation paradigm where the model directly generates

item identifiers (ID) given a user’s interaction history [Rajput et al., 2023]
• The task is cast as a sequence-to-sequence generation problem:

Input: user interaction sequence

Output: next item ID

• No explicit index is required

Figure 4: The GenRec model generates the next item ID [Zhu et al., 2024]

11 / 61

From generative retrieval to generative recommendation

• Generative information retrieval (GenIR): A GenIR model directly generates

relevant document identifiers in a sequence-to-sequence fashion, for a query

• Why it matters:

Moves beyond index-based retrieval

Enables end-to-end learning with strong generalization

• Inspiration for GenRec:

Items ≡ documents

User history ≡ query

Next-item prediction ≡ identifier generation

12 / 61

From generative retrieval to generative recommendation

• Generative information retrieval (GenIR): A GenIR model directly generates

relevant document identifiers in a sequence-to-sequence fashion, for a query

• Why it matters:

Moves beyond index-based retrieval

Enables end-to-end learning with strong generalization

• Inspiration for GenRec:

Items ≡ documents

User history ≡ query

Next-item prediction ≡ identifier generation

13 / 61

From generative retrieval to generative recommendation

• Generative information retrieval (GenIR): A GenIR model directly generates

relevant document identifiers in a sequence-to-sequence fashion, for a query

• Why it matters:

Moves beyond index-based retrieval

Enables end-to-end learning with strong generalization

• Inspiration for GenRec:

Items ≡ documents

User history ≡ query

Next-item prediction ≡ identifier generation

14 / 61

Advantages of GenRec [Rajput et al., 2023]

• Unified paradigm: Item corpus is indexed implicitly via a generative model

• Flexible conditioning: Easily incorporate user history, context, and auxiliary

information as prompt input

• ...

15 / 61

Q&A

Questions, . . .

Basic workflow of GenRec models

17 / 61

Basic pipeline

• Input: tokenized user interaction history

• Output: item ID via autoregressive decoding

• Model architecture: encoder-decoder

Figure 5: GenRec pipeline [Si et al., 2024]

18 / 61

Identifiers in GenRec

• What is an identifier? A unique, textual representation of an item (e.g.,

”item 12345”), used as the decoding target

• Why identifiers?

Serve as a symbolic reference to items in the catalog

Make it possible to reframe recommendation as a sequence generation problem

• Output format: Generated as token sequences (e.g., ”item”, ” ”, ”12”, ”345”)

19 / 61

Identifiers in GenRec

• What is an identifier? A unique, textual representation of an item (e.g.,

”item 12345”), used as the decoding target

• Why identifiers?

Serve as a symbolic reference to items in the catalog

Make it possible to reframe recommendation as a sequence generation problem

• Output format: Generated as token sequences (e.g., ”item”, ” ”, ”12”, ”345”)

20 / 61

Identifiers in GenRec

• What is an identifier? A unique, textual representation of an item (e.g.,

”item 12345”), used as the decoding target

• Why identifiers?

Serve as a symbolic reference to items in the catalog

Make it possible to reframe recommendation as a sequence generation problem

• Output format: Generated as token sequences (e.g., ”item”, ” ”, ”12”, ”345”)

21 / 61

Examples

• Random identifiers [Geng et al., 2022]

Semantically meaningless: the token structure contains no information about item

content (e.g., ”item 12345”)

The model should learn to map user history to arbitrary string tokens

Harder to generalize, especially to unseen or cold-start items [Rajput et al., 2023]

• Semantic identifiers [Rajput et al., 2023]

Residual quantization codes

Improving learnability and generalization

22 / 61

Training

• Given the user history, the model learns to maximize the likelihood of the next

item identifier

Figure 6: Training illustration [Rajput et al., 2023]

23 / 61

Inference

• Beam / greedy search

Figure 7: Beam search illustration [Li et al., 2020]

24 / 61

Inference

• Constrained beam search: ensure only valid IDs
• Prefix tree structure:

Nodes are annotated with tokens from the vocabulary

For each node, its children indicate all the allowed continuations from the prefix

defined traversing the trie from the root to it

Figure 8: Constrained decoding with a prefix tree [Si et al., 2024]

25 / 61

Recent advances in GenRec

26 / 61

Roadmap

P5

[Geng et al., 2022]

(Randomly IDs)

TIGER

[Rajput et al., 2023]

(RQ codes as IDs)

SEATER

[Si et al., 2024]

(Tree-structured IDs

and contrastive ranking)

EAGER

[Wang et al., 2024]

(Integrating user behaviour

and semantics)

CoST

[Zhu et al., 2024]

(Contrastive quantization)

MQL4GRec

[Si et al., 2024]

(Generative multi-modal

recommendation)

27 / 61

Roadmap

P5

[Geng et al., 2022]

(Randomly IDs)

TIGER

[Rajput et al., 2023]

(RQ codes as IDs)

SEATER

[Si et al., 2024]

(Tree-structured IDs

and contrastive ranking)

EAGER

[Wang et al., 2024]

(Integrating user behaviour

and semantics)

CoST

[Zhu et al., 2024]

(Contrastive quantization)

MQL4GRec

[Si et al., 2024]

(Generative multi-modal

recommendation)

28 / 61

Roadmap

P5

[Geng et al., 2022]

(Randomly IDs)

TIGER

[Rajput et al., 2023]

(RQ codes as IDs)

SEATER

[Si et al., 2024]

(Tree-structured IDs

and contrastive ranking)

EAGER

[Wang et al., 2024]

(Integrating user behaviour

and semantics)

CoST

[Zhu et al., 2024]

(Contrastive quantization)

MQL4GRec

[Si et al., 2024]

(Generative multi-modal

recommendation)

29 / 61

Roadmap

P5

[Geng et al., 2022]

(Randomly IDs)

TIGER

[Rajput et al., 2023]

(RQ codes as IDs)

SEATER

[Si et al., 2024]

(Tree-structured IDs

and contrastive ranking)

EAGER

[Wang et al., 2024]

(Integrating user behaviour

and semantics)

CoST

[Zhu et al., 2024]

(Contrastive quantization)

MQL4GRec

[Si et al., 2024]

(Generative multi-modal

recommendation)

30 / 61

Roadmap

P5

[Geng et al., 2022]

(Randomly IDs)

TIGER

[Rajput et al., 2023]

(RQ codes as IDs)

SEATER

[Si et al., 2024]

(Tree-structured IDs

and contrastive ranking)

EAGER

[Wang et al., 2024]

(Integrating user behaviour

and semantics)

CoST

[Zhu et al., 2024]

(Contrastive quantization)

MQL4GRec

[Si et al., 2024]

(Generative multi-modal

recommendation)

31 / 61

Roadmap

P5

[Geng et al., 2022]

(Randomly IDs)

TIGER

[Rajput et al., 2023]

(RQ codes as IDs)

SEATER

[Si et al., 2024]

(Tree-structured IDs

and contrastive ranking)

EAGER

[Wang et al., 2024]

(Integrating user behaviour

and semantics)

CoST

[Zhu et al., 2024]

(Contrastive quantization)

MQL4GRec

[Si et al., 2024]

(Generative multi-modal

recommendation)

32 / 61

Part 2

Case studies in GenRec: TIGER and SEATER

33 / 61

Recommender systems with
generative retrieval

34 / 61

TIGER [Rajput et al., 2023]

• Token-based Item Generation for End-to-end Recommendation (TIGER)

• Key idea: Reformulate recommendation as sequence-to-sequence generation

• Uses a shared encoder-decoder architecture, trained to decode item IDs

Figure 9: TIGER overview [Rajput et al., 2023]

35 / 61

Identifier

• Goal: Represent each item with a structured, semantically meaningful identifier

• Steps:

Encode (Sentence-T5) item metadata into dense vectors

Apply residual quantization (RQ) → a sequence of discrete tokens

Figure 10: ID generation [Rajput et al., 2023]

36 / 61

Why semantic item IDs matter

• Arbitrary IDs (e.g., item123) are difficult to be learned, since there is a big

semantic gap between the model vocabulary and IDs

• Semantic IDs provide structured, informative targets for generative modeling

• Advantages:

Generalization: Easier for models to decode and recover unseen or rare items

Compositionality: Token overlap reflects semantic similarity across items

37 / 61

Training pipeline

• Stage 1: Train the VAE-based ID generator

Item metadata → encode → RQ

• Stage 2: Generate item IDs

Each item is assigned a multi-token ID from learned codebooks

IDs are fixed and used as targets in next stage

• Stage 3: Train the GenRec model

Autoregressive model trained to predict next item’s ID based on user history

38 / 61

Training the VAE-based ID generator

• Step 1: Encode item metadata

Metadata (title, category, etc.) encoded to a dense vector z via an encoder.

• Step 2: Initialize residual

Initialize residual r1 = z

39 / 61

Training the VAE-based ID generator

• Step 3: Iterative quantization
For each level i = 1 to m:

• Select the closest codeword ci from codebook Vi :

ci = arg min
v∈Vi

∥ri − v∥

• Update residual: ri+1 = ri − ci

Figure 11: RQ pipeline
40 / 61

Training the VAE-based ID generator

• Step 4: Form IDs

The item ID is the token sequence: [c1, c2, ..., cm]

Each ci is interpretable and belongs to a specific semantic level

• Loss:

LVAE = Lrecon + β · KL(q(z |x)||p(z))

• Once trained, the encoder + RQ is used to generate IDs for downstream training

41 / 61

Training the VAE-based ID generator

• Step 4: Form IDs

The item ID is the token sequence: [c1, c2, ..., cm]

Each ci is interpretable and belongs to a specific semantic level

• Loss:

LVAE = Lrecon + β · KL(q(z |x)||p(z))

• Once trained, the encoder + RQ is used to generate IDs for downstream training

42 / 61

Training the VAE-based ID generator

• Step 4: Form IDs

The item ID is the token sequence: [c1, c2, ..., cm]

Each ci is interpretable and belongs to a specific semantic level

• Loss:

LVAE = Lrecon + β · KL(q(z |x)||p(z))

• Once trained, the encoder + RQ is used to generate IDs for downstream training

43 / 61

Training the GenRec model

• Input: A sequence of previously interacted item IDs

• Target: The ID tokens of the next item

• Training strategy:

Teacher forcing

Use cross-entropy loss on token prediction (MLE)

44 / 61

Inference

• Beam search or greedy decoding

• Post-processing: Map generated ID tokens back to item via lookup table or

similarity match

• Flexible decoding: Support diverse decoding (e.g., sampling, diverse beam)

45 / 61

Results

• Evaluated on Amazon Product Recommendation datasets (Books, Beauty, etc.)

• Compared against:

Traditional RecSys (SASRec, GRU4Rec)

Retrieval+Generation (Two-stage)

• TIGER outperforms the GenRec baseline P5

46 / 61

Limitations of TIGER

• Token-based decoding still struggles with:

Out-of-catalog items

No structural encoding of topic hierarchy or semantic relations

• No explicit modeling of:

Fairness, diversity, or long-tail bias

Personalized decoding strategies

Discriminative training signals

47 / 61

Q&A

Questions, . . .

Generative retrieval with semantic tree-
structured identifiers and contrastive learning

49 / 61

SEATER [Si et al., 2024]

• Semantic trEe-based generAtive reTriEval with contRastive learning (SEATER)

• Compared to TIGER:

TIGER uses flat semantic IDs; SEATER introduces tree structure

SEATER unifies generative & contrastive signals

50 / 61

Tree-structured item IDs

• Idea: Use tree-structured identifiers to reflect topic granularity

• Balanced K-ary tree structure
• Benefits:

Identifiers encode semantic hierarchy

Better generalization and interpretability

Figure 12: Tree-structured IDs [Si et al., 2024]

51 / 61

Constructing tree-structured IDs

• Input: Item embedding retrieved from pretrained SASRec model

• Apply m-level RQ to encode the item embedding into a discrete token sequence

• Balanced k-ary tree structure:

Each level corresponds to a specific semantic granularity

The token path forms a leaf-to-root path in a semantic tree

Token space partitioned into subtrees (e.g., genre → subgenre → item)

52 / 61

Training: Generation loss

• Backbone: T5

• Input: User history sequence

• Target: Structured ID tokens

• Objective: MLE loss/ cross-entropy loss

Figure 13: MLE loss [Si et al., 2024]

53 / 61

Training: Alignment loss

• The parent token should align closely with the centroid of its child tokens

• This loss pulls the representations of tokens with parent-child relationships closer

and pushes the representations of unrelated tokens apart

Figure 14: Alignment loss [Si et al., 2024]

54 / 61

Training: Ranking contrastive loss

• Goal: Train the model to distinguish similar IDs by learning hierarchical structure

• The intuition: longer shared prefixes → more similar items in the hierarchy

• Approach:

Select sampled item ID with varying prefix lengths shared with the true ID

Use triplet contrastive loss to let the decoder learn ranking preferences based on

these prefix overlaps

Figure 15: Ranking loss [Si et al., 2024]

55 / 61

Training: Total loss

• Combine three objectives with tuned weights:

L = Lgen + λa · Lalign + λr · Lrank

56 / 61

Results

• Datasets: Yelp, Books, News, Micro-video

• Findings:

SEATER outperforms TIGER

Tree structure + ranking contrastive loss improves both generalization and

robustness.

57 / 61

Limitations

• Limitations:

Tree-based IDs still require careful design — poor trees lead to bad generalization

Does not yet support real-time dynamic index updates

High training complexity due to hybrid loss terms

• Future work:

Explore neural tree construction (learnable hierarchies)

Integrate reinforcement signals for better decoding feedback

Apply to recommendation and multi-modal retrieval

58 / 61

Q&A

Questions,. . .

References i

S. Fraihat, Q. Shambour, M. A. Al-Betar, and S. N. Makhadmeh. Variational autoencoders-based

algorithm for multi-criteria recommendation systems. Algorithms, 17(12):561, 2024.

S. Geng, S. Liu, Z. Fu, Y. Ge, and Y. Zhang. Recommendation as language processing (rlp): A unified

pretrain, personalized prompt & predict paradigm (p5). In Proceedings of the 16th ACM conference

on recommender systems, pages 299–315, 2022.

Q. Li, X. Zhang, J. Xiong, W.-M. Hwu, and D. Chen. Efficient methods for mapping neural machine

translator on fpgas. IEEE Transactions on Parallel and Distributed Systems, 32(7):1866–1877, 2020.

A. Moreno, H. Castro, and M. Riveill. Client-side hybrid rating prediction for recommendation. In User

Modeling, Adaptation, and Personalization: 22nd International Conference, UMAP 2014, Aalborg,

Denmark, July 7-11, 2014. Proceedings 22, pages 369–380. Springer, 2014.

S. Rajput, N. Mehta, A. Singh, R. Hulikal Keshavan, T. Vu, L. Heldt, L. Hong, Y. Tay, V. Tran,

J. Samost, et al. Recommender systems with generative retrieval. Advances in Neural Information

Processing Systems, 36:10299–10315, 2023.

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems Handbook.

Springer, 2011.

60 / 61

References ii

Z. Si, Z. Sun, J. Chen, G. Chen, X. Zang, K. Zheng, Y. Song, X. Zhang, J. Xu, and K. Gai. Generative

retrieval with semantic tree-structured identifiers and contrastive learning. In Proceedings of the

2024 Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval in the Asia Pacific Region, pages 154–163, 2024.

Q. Wang, H. Yin, H. Wang, Q. V. H. Nguyen, Z. Huang, and L. Cui. Enhancing collaborative filtering

with generative augmentation. In Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pages 548–556, 2019.

Y. Wang, J. Xun, M. Hong, J. Zhu, T. Jin, W. Lin, H. Li, L. Li, Y. Xia, Z. Zhao, et al. Eager:

Two-stream generative recommender with behavior-semantic collaboration. In Proceedings of the

30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 3245–3254, 2024.

J. Zhu, M. Jin, Q. Liu, Z. Qiu, Z. Dong, and X. Li. Cost: Contrastive quantization based semantic

tokenization for generative recommendation. In Proceedings of the 18th ACM Conference on

Recommender Systems, pages 969–974, 2024.

61 / 61

